ﻻ يوجد ملخص باللغة العربية
We study the appearance of induced parity-violating magnetic moment, in the presence of external magnetic fields, for even-number of fermion species coupled to dynamical fields in three dimensions. Specifically, we use a SU(2)xU(1) gauge model for dynamical gauge symmetry breaking, which is also proposed recently as a field theoretical model for high-temperature superconductors. By decomposing the fermionic degrees of freedom in terms of Landau levels, we show that, in the effective theory with the lowest Landau levels, a parity-violating magnetic moment interaction is induced by the higher Landau levels when the fermions are massive. The possible relevance of this result for a recently observed phenomenon in high-temperature superconductors is also discussed.
We consider three-dimensional lattice SU($N_c$) gauge theories with multiflavor ($N_f>1$) scalar fields in the adjoint representation. We investigate their phase diagram, identify the different Higgs phases with their gauge-symmetry pattern, and dete
We construct the general hydrodynamic description of (3+1)-dimensional chiral charged (quantum) fluids subject to a strong external magnetic field with effective field theory methods. We determine the constitutive equations for the energy-momentum te
A general procedure to describe the coupling $U_A (1) times U_B (1)$ between antisymmetric gauge fields is proposed. For vector gauge theories the inclusion of magnetic mixing in the hidden sector induces millicharges -- in principle -- observable. W
We study the Yang-Mills theory and quantum gravity at finite temperature, in the presence of Lagrange multiplier fields. These restrict the path integrals to field configurations that obey the classical equations of motion. This has the effect of dou
It has been conjectured that duality cascade occurs in the $mathcal{N}=3$ supersymmetric Yang-Mills Chern-Simons theory with the gauge group $U(N )_k times U(N+M )_{-k}$ coupled to two bi-fundamental hypermultiplets. The brane picture suggests that t