ﻻ يوجد ملخص باللغة العربية
In this paper the general form of scattering amplitudes for massless particles with equal spins s ($s s to s s$) or unequal spins ($s_a s_b to s_a s_b$) are derived. The imposed conditions are that the amplitudes should have the lowest possible dimension, have propagators of dimension $m^{-2}$, and obey gauge invariance. It is shown that the number of momenta required for amplitudes involving particles with s > 2 is higher than the number implied by 3-vertices for higher spin particles derived in the literature. Therefore, the dimension of the coupling constants following from the latter 3-vertices has a smaller power of an inverse mass than our results imply. Consequently, the 3-vertices in the literature cannot be the first interaction terms of a gauge-invariant theory. When no spins s > 2 are present in the process the known QCD, QED or (super) gravity amplitudes are obtained from the above general amplitudes.
We revisit the classical theory of a relativistic massless charged point particle with spin and interacting with an external electromagnetic field. In particular, we give a proper definition of its kinetic energy and its total energy, the latter bein
Loop amplitudes for massless five particle scattering processes contain Feynman integrals depending on the external momentum invariants: pentagon functions. We perform a detailed study of the analyticity properties and cut structure of these function
Motivated by the conduction properties of graphene discovered and studied in the last decades, we consider the quantum dynamics of a massless, charged, spin 1/2 relativistic particle in three dimensional space-time, in the presence of an electrostati
We emphasize that scattering amplitudes of a wide class of models to any order in the coupling are constructible by on-shell tree subamplitudes. This follows from the Feynman-tree theorem combined with BCFW on-shell recursion relations. In contrast t
We complete the analytic calculation of the full set of two-loop Feynman integrals required for computation of massless five-particle scattering amplitudes. We employ the method of canonical differential equations to construct a minimal basis set of