Two-dimensional QED with $N$ flavor fermions is solved at zero and finite temperature with arbitrary fermion masses to explore QCD physics such as chiral condensate and string tension. The problem is reduced to solving a Schrodinger equation for $N$ degrees of freedom with a specific potential determined by the ground state of the Schrodinger problem itself.
We present simulations of non-equilibrium dynamics of quantum field theories on digital quantum computers. As a representative example, we consider the Schwinger model, a 1+1 dimensional U(1) gauge theory, coupled through a Yukawa-type interaction to
a thermal environment described by a scalar field theory. We use the Hamiltonian formulation of the Schwinger model discretized on a spatial lattice. With the thermal scalar fields traced out, the Schwinger model can be treated as an open quantum system and its real-time dynamics are governed by a Lindblad equation in the Markovian limit. The interaction with the environment ultimately drives the system to thermal equilibrium. In the quantum Brownian motion limit, the Lindblad equation is related to a field theoretical Caldeira-Leggett equation. By using the Stinespring dilation theorem with ancillary qubits, we perform studies of both the non-equilibrium dynamics and the preparation of a thermal state in the Schwinger model using IBMs simulator and quantum devices. The real-time dynamics of field theories as open quantum systems and the thermal state preparation studied here are relevant for a variety of applications in nuclear and particle physics, quantum information and cosmology.
We relate quark confinement, as measured by the Polyakov-loop order parameter, to color confinement, as described by the Kugo-Ojima/Gribov-Zwanziger scenario. We identify a simple criterion for quark confinement based on the IR behaviour of ghost and
gluon propagators, and compute the order-parameter potential from the knowledge of Landau-gauge correlation functions with the aid of the functional RG. Our approach predicts the deconfinement transition in quenched QCD to be of first order for SU(3) and second order for SU(2) -- in agreement with general expectations. As an estimate for the critical temperature, we obtain T_c=284MeV for SU(3).
We present a five-dimensional anisotropic holographic model for light quarks supported by Einstein-dilaton-two-Maxwell action. This model generalizing isotropic holographic model with light quarks is characterized by a Van der Waals-like phase transi
tion between small and large black holes. We compare the location of the phase transition for Wilson loops with the positions of the phase transition related to the background instability and describe the QCD phase diagram in the thermodynamic plane -- temperature $T$ and chemical potential $mu$. The Cornell potential behavior in this anisotropic model is also studied. The asymptotics of the Cornell potential at large distances strongly depend on the parameter of anisotropy and orientation. There is also a nontrivial dependence of the Cornell potential on the boundary conditions of the dilaton field and parameter of anisotropy. With the help of the boundary conditions for the dilaton field one fits the results of the lattice calculations for the string tension as a function of temperature in isotropic case and then generalize to the anisotropic one.
We propose a unified description of two important phenomena: color confinement in large-$N$ gauge theory, and Bose-Einstein condensation (BEC). We focus on the confinement/deconfinement transition characterized by the increase of the entropy from $N^
0$ to $N^2$, which persists in the weak coupling region. Indistinguishability associated with the symmetry group -- SU($N$) or O($N$) in gauge theory, and S$_N$ permutations in the system of identical bosons -- is crucial for the formation of the condensed (confined) phase. We relate standard criteria, based on off-diagonal long range order (ODLRO) for BEC and the Polyakov loop for gauge theory. The constant offset of the distribution of the phases of the Polyakov loop corresponds to ODLRO, and gives the order parameter for the partially-(de)confined phase at finite coupling. We demonstrate this explicitly for several quantum mechanical systems (i.e., theories at small or zero spatial volume) at weak coupling, and argue that this mechanism extends to large volume and/or strong coupling. This viewpoint may have implications for confinement at finite $N$, and for quantum gravity via gauge/gravity duality.
It is shown that an effective theory with meron degrees of freedom produces confinement in SU(2) Yang Mills theory. This effective theory is compatible with center symmetry. When the scale is set by the string tension, the action density and topologi
cal susceptibility are similar to those arising in lattice QCD.