ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravity in 2+1 dimensions as a Riemann-Hilbert problem

105   0   0.0 ( 0 )
 نشر من قبل Max welling
 تاريخ النشر 1995
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Max Welling




اسأل ChatGPT حول البحث

In this paper we consider 2+1-dimensional gravity coupled to N point-particles. We introduce a gauge in which the $z$- and $bar{z}$-components of the dreibein field become holomorphic and anti-holomorphic respectively. As a result we can restrict ourselves to the complex plane. Next we show that solving the dreibein-field: $e^a_z(z)$ is equivalent to solving the Riemann-Hilbert problem for the group $SO(2,1)$. We give the explicit solution for 2 particles in terms of hypergeometric functions. In the N-particle case we give a representation in terms of conformal field theory. The dreibeins are expressed as correlators of 2 free fermion fields and twistoperators at the position of the particles.



قيم البحث

اقرأ أيضاً

We study quantum corrections to projectable Horava gravity with $z = 2$ scaling in 2+1 dimensions. Using the background field method, we utilize a non-singular gauge to compute the anomalous dimension of the cosmological constant at one loop, in a normalization adapted to the spatial curvature term.
We define and discuss classical and quantum gravity in 2+1 dimensions in the Galilean limit. Although there are no Newtonian forces between massive objects in (2+1)-dimensional gravity, the Galilean limit is not trivial. Depending on the topology of spacetime there are typically finitely many topological degrees of freedom as well as topological interactions of Aharonov-Bohm type between massive objects. In order to capture these topological aspects we consider a two-fold central extension of the Galilei group whose Lie algebra possesses an invariant and non-degenerate inner product. Using this inner product we define Galilean gravity as a Chern-Simons theory of the doubly-extended Galilei group. The particular extension of the Galilei group we consider is the classical double of a much studied group, the extended homogeneous Galilei group, which is also often called Nappi-Witten group. We exhibit the Poisson-Lie structure of the doubly extended Galilei group, and quantise the Chern-Simons theory using a Hamiltonian approach. Many aspects of the quantum theory are determined by the quantum double of the extended homogenous Galilei group, or Galilei double for short. We study the representation theory of the Galilei double, explain how associated braid group representations account for the topological interactions in the theory, and briefly comment on an associated non-commutative Galilean spacetime.
204 - M. Ciafaloni , S. Munier 2010
We present a full study of the 3-body problem in gravity in flat (2+1)-dimensional space-time, and in the nonrelativistic limit of small velocities. We provide an explicit form of the ADM Hamiltonian in a regular coordinate system and we set up all t he ingredients for canonical quantization. We emphasize the role of a U(2) symmetry under which the Hamiltonian is invariant and which should generalize to a U(N-1) symmetry for N bodies. This symmetry seems to stem from a braid group structure in the operations of looping of particles around each other, and guarantees the single-valuedness of the Hamiltonian. Its role for the construction of single-valued energy eigenfunctions is also discussed.
Asymptotically flat black holes in $2+1$ dimensions are a rarity. We study the recently found black flower solutions (asymptotically flat black holes with deformed horizons), static black holes, rotating black holes and the dynamical black flowers (b lack holes with radiative gravitons ) of the purely quadratic version of new massive gravity. We show how they appear in this theory and we also show that they are also solutions to the infinite order extended version of the new massive gravity, that is the Born-Infeld extension of new massive gravity with an amputated Einsteinian piece. The same metrics also solve the topologically extend
We consider a point particle coupled to 2+1 gravity, with de Sitter gauge group SO(3,1). We observe that there are two contraction limits of the gauge group: one resulting in the Poincare group, and the second with the gauge group having the form AN( 2) ltimes an(2)^*. The former case was thoroughly discussed in the literature, while the latter leads to the deformed particle action with de Sitter momentum space, like in the case of kappa-Poincare particle. However, the construction forces the mass shell constraint to have the form p_0^2 = m^2, so that the effective particle action describes the deformed Carroll particle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا