ﻻ يوجد ملخص باللغة العربية
In a space-time of two dimensions the overall effect of the collision of two solitons is a time delay (or advance) of their final trajectories relative to their initial trajectories. For the solitons of affine Toda field theories, the space-time displacement of the trajectories is proportional to the logarithm of a number $X$ depending only on the species of the colliding solitons and their rapidity difference. $X$ is the factor arising in the normal ordering of the product of the two vertex operators associated with the solitons. $X$ is shown to take real values between $0$ and $1$. This means that, whenever the solitons are distinguishable, so that transmission rather than reflection is the only possible interpretation of the classical scattering process, the time delay is negative and so an indication of attractive forces between the solitons.
A cross between two well-known integrable multi-particle dynamics, an affine Toda molecule and a Sutherland system, is introduced for any affine root system. Though it is not completely integrable but partially integrable, or quasi exactly solvable,
Exact solutions to the quantum S-matrices for solitons in simply-laced affine Toda field theories are obtained, except for certain factors of simple type which remain undetermined in some cases. These are found by postulating solutions which are cons
Soliton theory and the theory of Hankel (and Toeplitz) operators have stayed essentially hermetic to each other. This paper is concerned with linking together these two very active and extremely large theories. On the prototypical example of the Cauc
For $mathfrak g$ a Kac-Moody algebra of affine type, we show that there is an $text{Aut}, mathcal O$-equivariant identification between $text{Fun},text{Op}_{mathfrak g}(D)$, the algebra of functions on the space of ${mathfrak g}$-opers on the disc, a
We study the kinematics of correlation functions of local and extended operators in a conformal field theory. We present a new method for constructing the tensor structures associated to primary operators in an arbitrary bosonic representation of the