ﻻ يوجد ملخص باللغة العربية
We conjecture that $W$ gravity can be interpreted as the gauge theory of $phi$ diffeomorphisms in the space of dimensionally-reduced $D=2+2$ $SU^*(infty)$ Yang-Mills instantons. These $phi$ diffeomorphisms preserve a volume-three form and are those which furnish the correspondence between the dimensionally-reduced Plebanski equation and the KP equation in $(1+2)$ dimensions. A supersymmetric extension furnishes super-$W$ gravity. The Super-Plebanski equation generates self-dual complexified super gravitational backgrounds (SDSG) in terms of the super-Plebanski second heavenly form. Since the latter equation yields $N=1~D=4~SDSG$ complexified backgrounds associated with the complexified-cotangent space of the Riemannian surface, $(T^*Sigma)^c$, required in the formulation of $SU^*(infty)$ complexified Self-Dual Yang-Mills theory, (SDYM ); it naturally follows that the recently constructed $D=2+2~N=4$ SDSYM theory- as the consistent background of the open $N=2$ superstring- can be embedded into the $N=1~SU^*(infty)$ complexified Self-Dual-Super-Yang-Mills (SDSYM) in $D=3+3$ dimensions. This is achieved after using a generalization of self-duality for $D>4$. We finally comment on the the plausible relationship between the geometry of $N=2$ strings and the moduli of $SU^*(infty)$ complexified SDSYM in $3+3$ dimensions.
Strings in $mathcal{N}=2$ supersymmetric ${rm U}(1)^N$ gauge theories with $N$ hypermultiplets are studied in the generic setting of an arbitrary Fayet-Iliopoulos triplet of parameters for each gauge group and an invertible charge matrix. Although th
Recently a very interesting three-dimensional $mathcal{N}=2$ supersymmetric theory with $SU(3)$ global symmetry was discussed by several authors. We denote this model by $T_x$. This was conjectured to have two dual descriptions, one with explicit sup
We introduce two new N = (2, 2) vector multiplets that couple naturally to generalized Kahler geometries. We describe their kinetic actions as well as their matter couplings both in N = (2, 2) and N = (1, 1) superspace.
Massless flows between the coset model su(2)_{k+1} otimes su(2)_k /su(2)_{2k+1} and the minimal model M_{k+2} are studied from the viewpoint of form factors. These flows include in particular the flow between the Tricritical Ising model and the Ising
Massless flows from the coset model su(2)_k+1 otimes su(2)_k /su(2)_2k+1 to the minimal model M_k+2 are studied from the viewpoint of form factors. These flows include in particular the flow from the Tricritical Ising model to the Ising model. By ana