ﻻ يوجد ملخص باللغة العربية
We solve the two-component Dirac equation in the presence of a spatially one dimensional symmetric attractive cusp potential. The components of the spinor solution are expressed in terms of Whittaker functions. We compute the bound states solutions and show that, as the potential amplitude increases, the lowest energy state sinks into the Dirac sea becoming a resonance. We characterize and compute the lifetime of the resonant state with the help of the phase shift and the Breit-Wigner relation. We discuss the limit when the cusp potential reduces to a delta point interaction.
We derive the nucleon-nucleon isoscalar spin-orbit potential from the Skyrme model and find good agreement with the Paris potential. This solves a problem that has been open for more than thirty years and gives a new geometric understanding of the sp
We study the dynamics of an electron subjected to a static uniform electric field within a one-dimensional tight-binding model with a slowly varying aperiodic potential. The unbiased model is known to support phases of localized and extended one-elec
We solve the Klein-Gordon equation in the presence of a spatially one-dimensional cusp potential. The scattering solutions are obtained in terms of Whittaker functions and the condition for the existence of transmission resonances is derived. We show
The Brown-Ravenhall operator was initially proposed as an alternative to describe the fermion-fermion interaction via Coulomb potential and subject to relativity. This operator is defined in terms of the associated Dirac operator and the projection o
We investigate the response to radio-frequency driving of an ultracold gas of attractively interacting fermions in a one-dimensional optical lattice. We study the system dynamics by monitoring the driving-induced population transfer to a third state,