ﻻ يوجد ملخص باللغة العربية
This paper considers general features of the derivative expansion of Feynman diagram contributions to the four-graviton scattering amplitude in eleven-dimensional supergravity compactified on a two-torus. These are translated into statements about interactions of the form D^2k R^4 in type II superstring theories, assuming the standard M-theory/string theory duality relationships, which provide powerful constraints on the effective interactions. In the ten-dimensional IIA limit we find that there can be no perturbative contributions beyond k string loops (for k>0). Furthermore, the genus h=k contributions are determined exactly by the one-loop eleven-dimensional supergravity amplitude for all values of k. A plausible interpretation of these observations is that the sum of h-loop Feynman diagrams of maximally extended supergravity is less divergent than might be expected and could be ultraviolet finite in dimensions d < 4 + 6/h -- the same bound as for N=4 Yang--Mills.
At low energies, interactions of massless particles in type II strings compactified on a torus $T^d$ are described by an effective Wilsonian action $mathcal{S}(Lambda)$, consisting of the usual supergravity Lagrangian supplemented by an infinite seri
We perform a general algebraic analysis on the possibility of realising slow-roll inflation in the moduli sector of string models. This problem turns out to be very closely related to the characterisation of models admitting metastable vacua with non
We continue the study of supersymmetric domain wall solutions in six-dimensional maximal gauged supergravity. We first give a classification of viable gauge groups with the embedding tensor in $mathbf{5}^{+7}$, $bar{mathbf{5}}^{+3}$, $mathbf{10}^{-1}
We use exceptional field theory as a tool to work out the full non-linear reduction ansaetze for the AdS$_5times S^5$ compactification of IIB supergravity and its non-compact counterparts in which the sphere $S^5$ is replaced by the inhomogeneous hyp
We use the boundary state formalism to study, from the closed string point of view, superpositions of branes and anti-branes which are relevant in some non-perturbative string dualities. Treating the tachyon instability of these systems as proposed b