ﻻ يوجد ملخص باللغة العربية
Strebel differentials are a special class of quadratic differentials with several applications in string theory. In this note we show that finding Strebel differentials with integral lengths is equivalent to finding generalized Argyres-Douglas singularities in the Coulomb moduli space of a U(N) $N=2$ gauge theory with massive flavours. Using this relation, we find an efficient technique to solve the problem of factorizing the Seiberg-Witten curve at the Argyres-Douglas singularity. We also comment upon a relation between more general Seiberg-Witten curves and Belyi maps.
We construct a new class of three-dimensional topological quantum field theories (3d TQFTs) by considering generalized Argyres-Douglas theories on $S^1 times M_3$ with a non-trivial holonomy of a discrete global symmetry along the $S^1$. For the mini
We propose a Nekrasov-type formula for the instanton partition functions of four-dimensional N=2 U(2) gauge theories coupled to (A_1,D_{2n}) Argyres-Douglas theories. This is carried out by extending the generalized AGT correspondence to the case of
We use Coulomb branch indices of Argyres-Douglas theories on $S^1 times L(k,1)$ to quantize moduli spaces ${cal M}_H$ of wild/irregular Hitchin systems. In particular, we obtain formulae for the wild Hitchin characters -- the graded dimensions of the
Argyres-Douglas theories constitute an important class of superconformal field theories in $4$d. The main focus of this paper is on two infinite families of such theories, known as $D^b_p(mathrm{SO}(2N))$ and $(A_m, D_n)$. We analyze in depth their c
We make a preliminary investigation into twisted $A_{2n}$ theories of class S. Contrary to a common piece of folklore, we establish that theories of this type realise a variety of models of Argyres-Douglas type while utilising only regular punctures.