ﻻ يوجد ملخص باللغة العربية
An important operation in generalized complex geometry is the Courant bracket which extends the Lie bracket that acts only on vectors to a pair given by a vector and a p-form. We explore the possibility of promoting the elements of the Courant bracket to physical fields by constructing a geometric action based on the Kirillov-Kostant symplectic form. For the $p=0$ forms, the action generalizes Polyakovs two-dimensional quantum gravity when viewed as the geometric action for the Virasoro algebra. We show that the geometric action arising from the centrally extended Courant bracket for the vector and zero form pair is similar to the geometric action obtained from the semi-direct product of the Virasoro algebra with a U(1) affine Kac-Moody algebra. For arbitrary $p$ restricted to a Dirac structure, we derived the geometric action and exhibit generalizations for almost complex structures built on the Kirillov-Kostant symplectic form. In the case of p+1 dimensional submanifolds, we also discuss a generalization of a Kahler structure on the orbits.
We consider two different constructions of higher brackets. First, based on a Grassmann-odd, nilpotent Delta operator, we define a non-commutative generalization of the higher Koszul brackets, which are used in a generalized Batalin-Vilkovisky algebr
The quantum deformation of the Poisson bracket is the Moyal bracket. We construct quantum deformation of the Dirac bracket for systems which admit global symplectic basis for constraint functions. Equivalently, it can be considered as an extension of
Nambu proposed an extension of dynamical system through the introduction of a new bracket (Nambu bracket) in 1973. This article is a short review of the developments after his paper. Some emphasis are put on a viewpoint that the Nambu bracket natural
In this paper we find an explicit formula for the most general vector evolution of curves on $RP^{n-1}$ invariant under the projective action of $SL(n,R)$. When this formula is applied to the projectivization of solution curves of scalar Lax operator
We develop the covariant phase space formalism allowing for non-vanishing flux, anomalies and field dependence in the vector field generators. We construct a charge bracket that generalizes the one introduced by Barnich and Troessaert and includes co