ﻻ يوجد ملخص باللغة العربية
We investigate the evolution of scalar metric perturbations across a sudden cosmological transition, allowing for an inhomogeneous surface stress at the transition leading to a discontinuity in the local expansion rate, such as might be expected in a big crunch/big bang event. We assume that the transition occurs when some function of local matter variables reaches a critical value, and that the surface stress is also a function of local matter variables. In particular we consider the case of a single scalar field and show that a necessary condition for the surface stress tensor to be perturbed at the transition is the presence of a non-zero intrinsic entropy perturbation of the scalar field. We present the matching conditions in terms of gauge-invariant variables assuming a sudden transition to a fluid-dominated universe with barotropic equation of state. For adiabatic perturbations the comoving curvature perturbation is continuous at the transition, while the Newtonian potential may be discontinuous if there is a discontinuity in the background Hubble expansion.
Primordial perturbations in our universe are believed to have a quantum origin, and can be described by the wavefunction of the universe (or equivalently, cosmological correlators). It follows that these observables must carry the imprint of the foun
I show that the problem of realizing inflation in theories with random potentials of a limited number of fields can be solved, and agreement with the observational data can be naturally achieved if at least one of these fields has a non-minimal kinet
Recently in various theoretical works, path-breaking progress has been made in recovering the well-known Page Curve of an evaporating black hole with Quantum Extremal Islands, proposed to solve the long-standing black hole information loss problem re
We investigate cosmological perturbations of scalar-tensor theories in Palatini formalism. First we introduce an action where the Ricci scalar is conformally coupled to a function of a scalar field and its kinetic term and there is also a k-essence t
We find new, simple cosmological solutions with flat, open, and closed spatial geometries, contrary to the previous wisdom that only the open model is allowed. The metric and the St{u}ckelberg fields are given explicitly, showing nontrivial configura