We propose a universal method of relating the Calogero model to a set of decoupled particles on the real line, which can be uniformly applied to both the conformal and nonconform
We continue the research initiated in hep-th/0607215 and apply our method of conformal automorphisms to generate various N=4 superconformal quantum many-body systems on the real line from a set of decoupled particles extended by fermionic degrees of
freedom. The su(1,1|2) invariant models are governed by two scalar potentials obeying a system of nonlinear partial differential equations which generalizes the Witten-Dijkgraaf-Verlinde-Verlinde equations. As an application, the N=4 superconformal extension of the three-particle (A-type) Calogero model generates a unique G_2-type Hamiltonian featuring three-body interactions. We fully analyze the N=4 superconformal three- and four-particle models based on the root systems of A_1 + G_2 and F_4, respectively. Beyond Wyllards solutions we find a list of new models, whose translational non-invariance of the center-of-mass motion fails to decouple and extends even to the relative particle motion.
We make use of the conformal compactification of Minkowski spacetime $M^{#}$ to explore a way of describing general, nonlinear Maxwell fields with conformal symmetry. We distinguish the inverse Minkowski spacetime $[M^{#}]^{-1}$ obtained via conforma
l inversion, so as to discuss a doubled compactified spacetime on which Maxwell fields may be defined. Identifying $M^{#}$ with the projective light cone in $(4+2)$-dimensional spacetime, we write two independent conformal-invariant functionals of the $6$-dimensional Maxwellian field strength tensors -- one bilinear, the other trilinear in the field strengths -- which are to enter general nonlinear constitutive equations. We also make some remarks regarding the dimensional reduction procedure as we consider its generalization from linear to general nonlinear theories.
For the rational quantum Calogero systems of type $A_1{oplus}A_2$, $AD_3$ and $BC_3$, we explicitly present complete sets of independent conserved charges and their nonlinear algebras. Using intertwining (or shift) operators, we include the extra `od
d charges appearing for integral couplings. Formulae for the energy eigenstates are used to tabulate the low-level wave functions.
We review some recents developments of the algebraic structures and spectral properties of non-Hermitian deformations of Calogero models. The behavior of such extensions is illustrated by the $A_2$ trigonometric and the $D_3$ angular Calogero models.
Features like intertwining operators and conserved charges are discussed in terms of Dunkl operators. Hidden symmetries coming from the so-called algebraic integrability for integral values of the coupling are addressed together with a physical regularization of their action on the states by virtue of a $mathcal{PT}$-symmetry deformation.
We study dual conformal transformations of minimal area surfaces in $AdS_5 times S^5$ corresponding to holographic smooth Wilson loops and some other related observables. To act with dual conformal transformations we map the string solutions to the d
ual space by means of T-duality, then we apply a conformal transformation and finally T-dualize back to the original space. The transformation maps between string solutions with different boundary contours. The boundary contours of the minimal surfaces are not mapped back to the AdS boundary, and the regularized area of the surface changes.