ﻻ يوجد ملخص باللغة العربية
We study an energy spectrum of electron moving under the constant magnetic field in two dimensional noncommutative space. It take place with the gauge invariant way. The Hofstadter butterfly diagram of the noncommutative space is calculated in terms of the lattice model which is derived by the Bopps shift for space and by the Peierls substitution for external magnetic field. We also find the fractal structure in new diagram. Although the global features of the new diagram are similar to the diagram of the commutative space, the detail structure is different from it.
Electrons on the lattice subject to a strong magnetic field exhibit the fractal spectrum of electrons, which is known as the Hofstadter butterfly. In this work, we investigate unconventional superconductivity in a three-dimensional Hofstadter butterf
We introduce the magnonic Floquet Hofstadter butterfly in the two-dimensional insulating honeycomb ferromagnet. We show that when the insulating honeycomb ferromagnet is irradiated by an oscillating space- and time-dependent electric field, the hoppi
We study the Harper-Hofstadter Hamiltonian and its corresponding non-perturbative butterfly spectrum. The problem is algebraically solvable whenever the magnetic flux is a rational multiple of $2pi$. For such values of the magnetic flux, the theory a
We investigate theoretically the spectrum of a graphene-like sample (honeycomb lattice) subjected to a perpendicular magnetic field and irradiated by circularly polarized light. This system is studied using the Floquet formalism, and the resulting Ho
We develop a generic $mathbf{k}cdot mathbf{p}$ open momentum space method for calculating the Hofstadter butterfly of both continuum (Moire) models and tight-binding models, where the quasimomentum is directly substituted by the Landau level (LL) ope