ﻻ يوجد ملخص باللغة العربية
We study the scalar perturbation sector of the general axisymmetric warped Salam-Sezgin model with codimension-2 branes. We focus on the perturbations which mix with the dilaton. We show that the scalar fluctuations analysis can be reduced to studying two scalar modes of constant wavefunction, plus modes of non-constant wavefunction which obey a single Schroedinger equation. From the obtained explicit solution of the scalar modes, we point out the importance of the non-constant modes in describing the four dimensional effective theory. This observation remains true for the unwarped case and was neglected in the relevant literature. Furthermore, we show that the warped solutions are free of instabilities.
We consider a deformation of five-dimensional warped gravity with bulk and boundary mass terms to quadratic order in the action. We show that massless zero modes occur for special choices of the masses. The tensor zero mode is a smooth deformation of
We propose a set of diffeomorphism that act non-trivially near the horizon of the Kerr black hole. We follow the recent developments of Haco-Hawking-Perry-Strominger to quantify this phase space, with the most substantial difference being our choice
We consider the effect of warping on the distribution of type IIB flux vacua constructed with Calabi-Yau orientifolds. We derive an analytical form of the distribution that incorporates warping and find close agreement with the results of a Monte Car
We classify the geometries of the most general warped, flux AdS backgrounds of heterotic supergravity up to two loop order in sigma model perturbation theory. We show under some mild assumptions that there are no $AdS_n$ backgrounds with $n ot=3$. Mo
The Lorentzian type IIB matrix model has been studied as a promising candidate for a nonperturbative formulation of superstring theory. In particular, the emergence of (3+1)D expanding space-time was observed by Monte Carlo studies of this model. It