ترغب بنشر مسار تعليمي؟ اضغط هنا

Twisted boundary states and representation of generalized fusion algebra

112   0   0.0 ( 0 )
 نشر من قبل Hiroshi Ishikawa
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The mutual consistency of boundary conditions twisted by an automorphism group G of the chiral algebra is studied for general modular invariants of rational conformal field theories. We show that a consistent set of twisted boundary states associated with any modular invariant realizes a non-negative integer matrix representation (NIM-rep) of the generalized fusion algebra, an extension of the fusion algebra by representations of the twisted chiral algebra associated with the automorphism group G. We check this result for several concrete cases. In particular, we find that two NIM-reps of the fusion algebra for $su(3)_k (k=3,5)$ are organized into a NIM-rep of the generalized fusion algebra for the charge-conjugation automorphism of $su(3)_k$. We point out that the generalized fusion algebra is non-commutative if G is non-abelian and provide some examples for $G = S_3$. Finally, we give an argument that the graph fusion algebra associated with simple current extensions coincides with the generalized fusion algebra for the extended chiral algebra, and thereby explain that the graph fusion algebra contains the fusion algebra of the extended theory as a subalgebra.



قيم البحث

اقرأ أيضاً

We define and calculate the fusion algebra of WZW model at a rational level by cohomological methods. As a byproduct we obtain a cohomological characterization of admissible representations of $widehat{gtsl}_{2}$.
102 - Hiroshi Ishikawa 2001
We construct various boundary states in the coset conformal field theory G/H. The G/H theory admits the twisted boundary condition if the G theory has an outer automorphism of the horizontal subalgebra that induces an automorphism of the H theory. By introducing the notion of the brane identification and the brane selection rule, we show that the twisted boundary states of the G/H theory can be constructed from those of the G and the H theories. We apply our construction to the su(n) diagonal cosets and the su(2)/u(1) parafermion theory to obtain the twisted boundary states of these theories.
72 - M.A. Walton 1996
The Demazure character formula is applied to the Verlinde formula for affine fusion rules. We follow Littelmanns derivation of a generalized Littlewood-Richardson rule from Demazure characters. A combinatorial rule for affine fusions does not result, however. Only a modified version of the Littlewood-Richardson rule is obtained that computes an (old) upper bound on the fusion coefficients of affine $A_r$ algebras. We argue that this is because the characters of simple Lie algebras appear in this treatment, instead of the corresponding affine characters. The Bruhat order on the affine Weyl group must be implicated in any combinatorial rule for affine fusions; the Bruhat order on subgroups of this group (such as the finite Weyl group) does not suffice.
82 - Peter Bouwknegt 2000
We give some higher dimensional analogues of the Durfee square formula and point out their relation to dissections of multipartitions. We apply the results to write certain affine Lie algebra characters in terms of Universal Chiral Partition Functions.
129 - Shailesh Kulkarni 2019
Using the expressions for generalized ADT current and potential in a self consistent manner, we derive the asymptotic symmetry algebra on AdS$_3$ and the near horizon extremal BTZ spacetimes. The structure of symmetry algebra among the conserved char ges for asymptotic killing vectors matches exactly with the known results thus establishing the algebraic equivalence between the well known existing formalisms for obtaining the conserved charges and the generalized ADT charges.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا