ترغب بنشر مسار تعليمي؟ اضغط هنا

The cosmological constant problem in codimension-two brane models

68   0   0.0 ( 0 )
 نشر من قبل Jan-Markus Schwindt
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the possibility of a dynamical solution to the cosmological constant problem in the contaxt of six-dimensional Einstein-Maxwell theory. A definite answer requires an understanding of the full bulk cosmology in the early universe, in which the bulk has time-dependent size and shape. We comment on the special properties of codimension two as compared to higher codimensions.

قيم البحث

اقرأ أيضاً

We consider a model with two parallel (positive tension) 3-branes separated by a distance $L$ in 5-dimensional spacetime. If the interbrane space is anti-deSitter, or is not precisely anti-deSitter but contains no event horizons, the effective 4-dime nsional cosmological constant seen by observers on one of the branes (chosen to be the visible brane) becomes exponentially small as $L$ grows large.
We introduce a novel method to circumvent Weinbergs no-go theorem for self-tuning the cosmological vacuum energy: a Lorentz-violating finite-temperature superfluid can counter the effects of an arbitrarily large cosmological constant. Fluctuations of the superfluid result in the graviton acquiring a Lorentz-violating mass and we identify a unique class of theories that are pathology free, phenomenologically viable, and do not suffer from instantaneous modes. This new and hitherto unidentified phase of massive gravity propagates the same degrees of freedom as general relativity with an additional Lorentz-violating scalar that is introduced by higher-derivative operators in a UV insensitive manner. The superfluid is therefore a consistent infrared modification of gravity. We demonstrate how the superfluid can degravitate a cosmological constant and discuss its phenomenology.
In self-tuning brane-world models with extra dimensions, large contributions to the cosmological constant are absorbed into the curvature of extra dimensions and consistent with flat 4d geometry. In models with conventional Lagrangians fine-tuning is needed nevertheless to ensure a finite effective Planck mass. Here, we consider a class of models with non conventional Lagrangian in which known problems can be avoided. Unfortunately these models are found to suffer from tachyonic instabilities. An attempt to cure these instabilities leads to the prediction of a positive cosmological constant, which in turn needs a fine-tuning to be consistent with observations.
The cosmology of branes undergoing the self-tuning mechanism of the cosmological constant is considered. The equations and matching conditions are derived in several coordinate systems, and an exploration of possible solution strategies is performed. The ensuing equations are solved analytically in the probe brane limit. We classify the distinct behavior for the brane cosmology and we correlate them with properties of the bulk (static) solutions. Their matching to the actual universe cosmology is addressed.
An earlier paper points out that a quantum treatment of the string landscape is necessary. It suggests that the wavefunction of the universe is mobile in the landscape until the universe reaches a meta-stable site with its cosmological constant $Lamb da_0$ smaller than the critical value $Lambda_c$, where $Lambda_c$ is estimated to be exponentially small compared to the Planck scale. Since this site has an exponentially long lifetime, it may well be todays universe. We investigate specific scenarios based on this quantum diffusion property of the cosmic landscape and find a plausible scenario for the early universe. In the last fast tunneling to the $Lambda_0$ ($<Lambda_c$) site in this scenario, all energies are stored in the nucleation bubble walls, which are released to radiation only after bubble collisions and thermalization. So the $Lambda_0$ site is chosen even if $Lambda_0$ plus radiation is larger than $Lambda_c$, as long as the radiation does not destabilize the $Lambda_0$ vacuum. A consequence is that inflation must happen before this last fast tunneling, so the inflationary scenario that emerges naturally is extended brane inflation, where the brane motion includes a combination of rolling, fast tunnelings, slow-roll, hopping and percolation in the landscape. We point out that, in the brane world, radiation during nucleosynthesis are mostly on the standard model branes (brane radiation, as opposed to radiation in the bulk). This distinction may lead to interesting dynamics. We consider this paper as a road map for future investigations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا