ﻻ يوجد ملخص باللغة العربية
We study the stability of fuzzy S^2 x S^2 x S^2 backgrounds in three different IIB type matrix models with respect to the change of the spins of each S^2 at the two loop level. We find that S^2 x S^2 x S^2 background is metastable and the effective action favors a single large S^2 in comparison to the remaining S^2 x S^2 in the models with Myers term. On the other hand, we find that a large S^2 x S^2 in comparison to the remaining S^2 is favored in IIB matrix model itself. We further study the stability of fuzzy S^2 x S^2 background in detail in IIB matrix model with respect to the scale factors of each S^2 as well. In this case, we find unstable directions which lower the effective action away from the most symmetric fuzzy S^2 x S^2 background.
We investigate the Wilson line correlators dual to supergravity multiplets in N=4 non-commutative gauge theory on S^2 x S^2. We find additional non-analytic contributions to the correlators due to UV/IR mixing in comparison to ordinary gauge theory.
We show that in the quadratic curvature theory of gravity, or simply $R_{mu u} ^2$ gravity, the tree-level unitariy bound (tree unitarity) is violated in the UV region but an analog for $S$-matrix unitarity ($SS^{dagger} = 1$) is satisfied. This the
We derive the exact S-matrix for the scattering of particular representations of the centrally-extended psu(1|1)^2 Lie superalgebra, conjectured to be related to the massive modes of the light-cone gauge string theory on AdS_2 x S^2 x T^6. The S-matr
We construct 4D $mathcal{N}=2$ theories on an infinite family of 4D toric manifolds with the topology of connected sums of $S^2 times S^2$. These theories are constructed through the dimensional reduction along a non-trivial $U(1)$-fiber of 5D theori
Let $k$ be a subring of the field of rational functions in $x, v, s$ which contains $x^{pm 1}, v^{pm 1}, s^{pm 1}$. If $M$ is an oriented 3-manifold, let $S(M)$ denote the Homflypt skein module of $M$ over $k$. This is the free $k$-module generated b