ﻻ يوجد ملخص باللغة العربية
We use F-theory to derive a general expression for the flux potential of type II compactifications with D7/D3 branes, including open string moduli and 2-form fluxes on the branes. Our main example is F-theory on K3 $times$ K3 and its orientifold limit T^2/Z_2 x K3. The full scalar potential cannot be derived from the bulk superpotential W=int Omega wedge G_3 and generically destabilizes the orientifold. Generically all open and closed string moduli are fixed, except for a volume factor. An alternative formulation of the problem in terms of the effective supergravity is given and we construct an explicit map between the F-theory fluxes and gaugings. We use the superpotential to compute the effective action for flux compactifications on orbifolds, including the mu-term and soft-breaking terms on the D7-brane world-volume.
A classification of D-branes in Type IIB Op^- orientifolds and orbifolds in terms of Real and equivariant KK-groups is given. We classify D-branes intersecting orientifold planes from which are recovered some special limits as the spectrum for D-bran
We present an explicit string realisation of a cosmological inflationary scenario we proposed recently within the framework of type IIB flux compactifications in the presence of three magnetised D7-brane stacks. Inflation takes place around a metasta
A recently constructed limit of K3 has a long neck consisting of segments, each of which is a nilfold fibred over a line, that are joined together with Kaluza-Klein monopoles. The neck is capped at either end by a Tian-Yau space, which is non-compact
Motivated by potential phenomenological applications, we develop the necessary tools for building GUT models in F-theory. This approach is quite flexible because the local geometrical properties of singularities in F-theory compactifications encode t
We examine the vacuum structure of 4D effective theories of moduli fields in spacetime compactifications with quantized background fluxes. Imposing the no-scale structure for the volume deformations, we numerically investigate the distributions of fl