ترغب بنشر مسار تعليمي؟ اضغط هنا

The Quantum-Classical Transition: The Fate of the Complex Structure

358   0   0.0 ( 0 )
 نشر من قبل Giuseppe Scolarici dr
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

According to Dirac, fundamental laws of Classical Mechanics should be recovered by means of an appropriate limit of Quantum Mechanics. In the same spirit it is reasonable to enquire about the fundamental geometric structures of Classical Mechanics which will survive the appropriate limit of Quantum Mechanics. This is the case for the symplectic structure. On the contrary, such geometric structures as the metric tensor and the complex structure, which are necessary for the formulation of the Quantum theory, may not survive the Classical limit, being not relevant in the Classical theory. Here we discuss the Classical limit of those geometric structures mainly in the Ehrenfest and Heisenberg pictures, i.e. at the level of observables rather than at the level of states. A brief discussion of the fate of the complex structure in the Quantum-Classical transition in the Schroedinger picture is also mentioned.

قيم البحث

اقرأ أيضاً

This paper examines the complex trajectories of a classical particle in the potential V(x)=-cos(x). Almost all the trajectories describe a particle that hops from one well to another in an erratic fashion. However, it is shown analytically that there are two special classes of trajectories x(t) determined only by the energy of the particle and not by the initial position of the particle. The first class consists of periodic trajectories; that is, trajectories that return to their initial position x(0) after some real time T. The second class consists of trajectories for which there exists a real time T such that $x(t+T)=x(t) pm2 pi$. These two classes of classical trajectories are analogous to valence and conduction bands in quantum mechanics, where the quantum particle either remains localized or else tunnels resonantly (conducts) through a crystal lattice. These two special types of trajectories are associated with sets of energies of measure 0. For other energies, it is shown that for long times the average velocity of the particle becomes a fractal-like function of energy.
The Picard-Fuchs equation is a powerful mathematical tool which has numerous applications in physics, for it allows to evaluate integrals without resorting to direct integration techniques. We use this equation to calculate both the classical action and the higher-order WKB corrections to it, for the sextic double-well potential and the Lame potential. Our development rests on the fact that the Picard-Fuchs method links an integral to solutions of a differential equation with the energy as a parameter. Employing the same argument we show that each higher-order correction in the WKB series for the quantum action is a combination of the classical action and its derivatives. From this, we obtain a computationally simple method of calculating higher-order quantum-mechanical corrections to the classical action, and demonstrate this by calculating the second-order correction for the sextic and the Lame potential. This paper also serves as a self-consistent guide to the use of the Picard-Fuchs equation.
We study conformal higher spin (CHS) fields on constant curvature backgrounds. By employing parent formulation technique in combination with tractor description of GJMS operators we find a manifestly factorized form of the CHS wave operators for symm etric fields of arbitrary integer spin $s$ and gauge invariance of arbitrary order $tleq s$. In the case of the usual Fradkin-Tseytlin fields $t=1$ this gives a systematic derivation of the factorization formulas known in the literature while for $t>1$ the explicit formulas were not known. We also relate the gauge invariance of the CHS fields to the partially-fixed gauge invariance of the factors and show that the factors can be identified with (partially gauge-fixed) wave operators for (partially)-massless or special massive fields. As a byproduct, we establish a detailed relationship with the tractor approach and, in particular, derive the tractor form of the CHS equations and gauge symmetries.
We study the SL(2,R) WZWN string model describing bosonic string theory in AdS_3 space-time as a deformed oscillator together with its mass spectrum and the string modified SL(2,R) uncertainty relation. The SL(2,R) string oscillator is far more quant um (with higher quantum uncertainty) and more excited than the non deformed one. This is accompassed by the highly excited string mass spectrum which is drastically changed with respect to the low excited one. The highly excited quantum string regime and the low excited semiclassical regime of the SL(2,R) string model are described and shown to be the quantum-classical dual of each other in the precise sense of the usual classical-quantum duality. This classical-quantum realization is not assumed nor conjectured. The quantum regime (high curvature) displays a modified Heisenbergs uncertainty relation, while the classical (low curvature) regime has the usual quantum mechanics uncertainty principle.
We show that quantum curves arise in infinite families and have the structure of singular vectors of a relevant symmetry algebra. We analyze in detail the case of the hermitian one-matrix model with the underlying Virasoro algebra, and the super-eige nvalue model with the underlying super-Virasoro algebra. In the Virasoro case we relate singular vector structure of quantum curves to the topological recursion, and in the super-Virasoro case we introduce the notion of super-quantum curves. We also discuss the double quantum structure of the quantum curves and analyze specific examples of Gaussian and multi-Penner models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا