ﻻ يوجد ملخص باللغة العربية
We study the minimal unitary representations of noncompact exceptional groups that arise as U-duality groups in extended supergravity theories. First we give the unitary realizations of the exceptional group E_{8(-24)} in SU*(8) as well as SU(6,2) covariant bases. E_{8(-24)} has E_7 X SU(2) as its maximal compact subgroup and is the U-duality group of the exceptional supergravity theory in d=3. For the corresponding U-duality group E_{8(8)} of the maximal supergravity theory the minimal realization was given in hep-th/0109005. The minimal unitary realizations of all the lower rank noncompact exceptional groups can be obtained by truncation of those of E_{8(-24)} and E_{8(8)}. By further truncation one can obtain the minimal unitary realizations of all the groups of the Magic Triangle. We give explicitly the minimal unitary realizations of the exceptional subgroups of E_{8(-24)} as well as other physically interesting subgroups. These minimal unitary realizations correspond, in general, to the quantization of their geometric actions as quasi-conformal groups as defined in hep-th/0008063.
We review the novel quasiconformal realizations of exceptional U-duality groups whose quantization lead directly to their minimal unitary irreducible representations. The group $E_{8(8)}$ can be realized as a quasiconformal group in the 57 dimensiona
We present a nonlinear realization of E_8 on a space of 57 dimensions, which is quasiconformal in the sense that it leaves invariant a suitably defined ``light cone in 57 dimensions. This realization, which is related to the Freudenthal triple system
We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the Minkowskian spacetimes
In this paper, we show that all Coleman automorphisms of a finite group with self-central minimal non-trivial characteristic subgroup are inner; therefore the normalizer property holds for these groups. Using our methods we show that the holomorph an
Nonrelativistic conformal groups, indexed by l=N/2, are analyzed. Under the assumption that the mass parametrizing the central extension is nonvanishing the coadjoint orbits are classified and described in terms of convenient variables. It is shown t