ﻻ يوجد ملخص باللغة العربية
In hep-th/0312098 it was argued that by extending the ``$a$-maximization of hep-th/0304128 away from fixed points of the renormalization group, one can compute the anomalous dimensions of chiral superfields along the flow, and obtain a better understanding of the irreversibility of RG flow in four dimensional supersymmetric field theory. According to this proposal, the role of the running couplings is played by certain Lagrange multipliers that are introduced in the construction. We show that one can choose a parametrization of the space of couplings in which the Lagrange multipliers can indeed be identified with the couplings, and discuss the consequences of this for weakly coupled gauge theory.
In four spacetime dimensions, all ${cal N} =1$ supergravity-matter systems can be formulated in the so-called $mathsf{U}(1)$ superspace proposed by Howe in 1981. This paper is devoted to the study of those geometric structures which characterise a ba
We analyze four- and six-derivative couplings in the low energy effective action of $D=3$ string vacua with half-maximal supersymmetry. In analogy with an earlier proposal for the $( ablaPhi)^4$ coupling, we propose that the $ abla^2( ablaPhi)^4$ cou
Computation of circuit complexity has gained much attention in the Theoretical Physics community in recent times to gain insights about the chaotic features and random fluctuations of fields in the quantum regime. Recent studies of circuit complexity
We develop techniques, based on differential geometry, to compute holomorphic Yukawa couplings for heterotic line bundle models on Calabi-Yau manifolds defined as complete intersections in projective spaces. It is shown explicitly how these technique
We consider a topological coupling between a pseudo-scalar field and a 3-form gauge field in ${cal N}=1$ supersymmetric higher derivative 3-form gauge theories in four spacetime dimensions. We show that ghost/tachyon-free higher derivative Lagrangian