ترغب بنشر مسار تعليمي؟ اضغط هنا

On The Super Five Brane Hamiltonian

86   0   0.0 ( 0 )
 نشر من قبل Alexandra de Castro
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The explicit form of the Wess-Zumino term of the PST super 5-brane Lagrangian in 11 dimensions is obtained. A complete canonical analysis for a gauge fixed PST super 5-brane action reveals the expected mixture of first and second class constraints. The canonical Hamiltonian is quadratic in the antisymmetric gauge field. Finally, we find the light cone gauge Hamiltonian for the theory and its stability properties are commented.

قيم البحث

اقرأ أيضاً

We study the M-theory five-brane wrapped around the Seiberg-Witten curves for pure classical and exceptional groups given by an integrable system. Generically, the D4-branes arise as cuts that collapse to points after compactifying the eleventh dimen sion and going to the semiclassical limit, producing brane configurations of NS5- and D4-branes with N=2 gauge theories on the world volume of the four-branes. We study the symmetries of the different curves to see how orientifold planes are related to the involutions needed to obtain the distinguished Prym variety of the curve. This explains the subtleties encountered for the Sp(2n) and SO(2n +1). Using this approach we investigate the curves for exceptional groups, especially G_2 and E_6, and show that unlike for classical groups taking the semiclassical ten dimensional limit does not reduce the cuts to D4-branes. For G_2 we find a genus two quotient curve that contains the Prym and has the right properties to describe the G_2 field theory, but the involutions are far more complicated than the ones for classical groups. To realize them in M-theory instead of an orientifold plane we would need another object, a kind of curved orientifold surface.
74 - O.F. Dayi , B. Yapiskan 2002
Lagrangians of the Abelian Gauge Theory and its dual are related in terms of a shifted action. We show that in d=4 constrained Hamiltonian formulation of the shifted action yields Hamiltonian description of the dual theory, without referring to its L agrangian. We apply this method, at the first order in the noncommutativity parameter theta, to the noncommutative U(1) gauge theory possessing spatial noncommutativity. Its dual theory is effectively a space--time noncommutative U(1) gauge theory. However, we obtain a Hamiltonian formulation where time is commuting. Space-time noncommutative D3--brane worldvolume Hamiltonian is derived as the dual of space noncommutative U(1) gauge theory. We show that a BPS like bound can be obtained and it is saturated for configurations which are the same with the ordinary D3-brane BIon and dyon solutions.
Decoupling limits of physical interest occur in regions of space--time where the string coupling diverges. This is illustrated in the celebrated example of five-branes. There are several ways to overcome this strong-coupling problem. We review those which are somehow related to two-dimensional conformal field theories. One method consists of distributing the branes over transverse space, either on a circle or over a sphere. Those distributions are connected to conformal field theories by T-dualities or lead to a new kind of sigma model where the target space is a patchwork of pieces of exact conformal-field-theory target spaces. An alternative method we discuss is the introduction of diluted F-strings, which trigger a marginal deformation of an AdS$_3times S^3times T^4$ background with a finite string coupling. Our discussion raises the question of finding brane configurations, their spectrum, their geometry, and their interpretation in terms of two-dimensional conformal models.
We study the Higgs branch of 5d superconformal theories engineered from brane webs with orientifold five-planes. We propose a generalization of the rules to derive magnetic quivers from brane webs pioneered in arXiv:2004.04082, by analyzing theories that can be described with a brane web with and without O5 planes. Our proposed magnetic quivers include novel features, such as hypermultiplets transforming in the fundamental-fundamental representation of two gauge nodes, antisymmetric matter, and $mathbb{Z}_2$ gauge nodes. We test our results by computing the Coulomb and Higgs branch Hilbert series of the magnetic quivers obtained from the two distinct constructions and find agreement in all cases.
A complete analysis of the canonical structure for a gauge fixed PST bosonic five brane action is performed. This canonical formulation is quadratic in the dependence on the antisymmetric field and it has second class constraints. We remove the secon d class constraints and a master canonical action with only first class constraints is proposed. The nilpotent BRST charge and its BRST invariant effective theory is constructed. The construction does not assume the existence of the inverse of the induced metric. Singular configurations are then physical ones. We obtain the physical Hamiltonian of the theory and analyze its stability properties. Finally, by studying the algebra of diffeomorphisms we find under mild assumptions the general structure for the Hamiltonian constraint for theories invariant under 6 dimensional diffeomorphisms and we give an algebraic characterization of the constraint associated with the bosonic five brane action. We also identify the constraint for the bosonic five brane action upgraded with a cosmological term, it contains a Born-Infeld type term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا