ﻻ يوجد ملخص باللغة العربية
We construct the most general non-extremal deformation of the D-instanton solution with maximal rotational symmetry. The general non-supersymmetric solution carries electric charges of the SL(2,R) symmetry, which correspond to each of the three conjugacy classes of SL(2,R). Our calculations naturally generalise to arbitrary dimensions and arbitrary dilaton couplings. We show that for specific values of the dilaton coupling parameter, the non-extremal instanton solutions can be viewed as wormholes of non-extremal Reissner-Nordstrom black holes in one higher dimension. We extend this result by showing that for other values of the dilaton coupling parameter, the non-extremal instanton solutions can be uplifted to non-extremal non-dilatonic p-branes in p+1 dimensions higher. Finally, we attempt to consider the solutions as instantons of (compactified) type IIB superstring theory. In particular, we derive an elegant formula for the instanton action. We conjecture that the non-extremal D-instantons can contribute to the R^8-terms in the type IIB string effective action.
We investigate non-extremal D-instantons in an asymptotically $ AdS_5 times S^5$ background and the role they play in the $ AdS_5 / CFT_4$ correspondence. We find that the holographic dual operators of non-extremal D-instanton configurations do not c
We construct the most general non-extremal spherically symmetric instanton solution of a gravity-dilaton-axion system with $SL(2,R)$ symmetry, for arbitrary euclidean spacetime dimension $Dgeq 3$. A subclass of these solutions describe completely reg
We point out that in some situations it is possible to use matrix model techniques a la Dijkgraaf-Vafa to perturbatively compute D-brane instanton effects. This provides an explanation in terms of stringy instantons of the results in hep-th/0311181.
Instanton is known to exist in Euclidean spacetime only. Their role in real time dynamics is usually understood as tunneling effect by Wick rotation. We illustrate other effects of instanton in holography by investigating 5d effective gravity theory
Recently, Witten has proposed a mechanism for symmetry enhancement in $SO(32)$ heterotic string theory, where the singularity obtained by shrinking an instanton to zero size is resolved by the appearance of an $Sp(1)$ gauge symmetry. In this short le