ﻻ يوجد ملخص باللغة العربية
We study four-point correlation functions of half-BPS operators of arbitrary weight for all dimensions d=3,4,5,6 where superconformal theories exist. Using harmonic superspace techniques, we derive the superconformal Ward identities for these correlators and present them in a universal form. We then solve these identities, employing Jack polynomial expansions. We show that the general solution is parameterized by a set of arbitrary two-variable functions, with the exception of the case d=4, where in addition functions of a single variable appear. We also discuss the operator product expansion using recent results on conformal partial wave amplitudes in arbitrary dimension.
We obtain all planar four-point correlators of half-BPS operators in $mathcal{N}=4$ SYM up to five loops. The ansatz for the integrand is fixed partially by imposing light-cone OPE relations between different correlators. We then fix the integrated c
We consider a double OPE limit of the planar four-point function of stress tensor multiplets in N = 4 SYM theory. Loop integrands for this correlator have been constructed to very high order, but the corresponding integrals are explicitly known only
Using the pure spinor formalism for the superstring in an $AdS_5times S^5$ background, a simple expression is found for half-BPS vertex operators. At large radius, these vertex operators reduce to the usual supergravity vertex operators in a flat bac
We discuss a general procedure to obtain 1/2 BPS partition functions for generic N=1 quiver gauge theories. These functions count the gauge invariant operators (bosonic and fermionic), charged under all the global symmetries (mesonic and baryonic), i
We consider a semiclassical (large string tension ~ lambda^1/2) limit of 4-point correlator of two heavy vertex operators with large quantum numbers and two light operators. It can be written in a factorized form as a product of two 3-point functions