ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Actions of Matrix Models on Homogeneous Spaces

205   0   0.0 ( 0 )
 نشر من قبل Yoshihisa Kitazawa
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We evaluate the effective actions of supersymmetric matrix models on fuzzy S^2times S^2 up to the two loop level. Remarkably it turns out to be a consistent solution of IIB matrix model. Based on the power counting and SUSY cancellation arguments, we can identify the t Hooft coupling and large N scaling behavior of the effective actions to all orders. In the large N limit, the quantum corrections survive except in 2 dimensional limits. They are O(N) and O(N^{4over 3}) for 4 and 6 dimensional spaces respectively. We argue that quantum effects single out 4 dimensionality among fuzzy homogeneous spaces.



قيم البحث

اقرأ أيضاً

We show that joinings of higher rank torus actions on S-arithmetic quotients of semi-simple or perfect algebraic groups must be algebraic.
We study chiral anomalies in $mathcal N=(0, 1)$ and $(0, 2)$ two-dimensional minimal sigma models defined on generic homogeneous spaces $G/H$. Such minimal theories contain only (left) chiral fermions and in certain cases are inconsistent because of incurable anomalies. We explicitly calculate the anomalous fermionic effective action and show how to remedy it by adding a series of local counter-terms. In this procedure, we derive a local anomaly matching condition, which is demonstrated to be equivalent to the well-known global topological constraint on $p_1(G/H)$. More importantly, we show that these local counter-terms further modify and constrain curable chiral models, some of which, for example, flow to nontrivial infrared superconformal fixed point. Finally, we also observe an interesting relation between $mathcal N=(0, 1)$ and $(0, 2)$ two-dimensional minimal sigma models and supersymmetric gauge theories. This paper generalizes and extends the results of our previous publication arXiv:1510.04324.
We argue that an effective field theory of local fluid elements captures the constraints on hydrodynamic transport stemming from the presence of quantum anomalies in the underlying microscopic theory. Focussing on global current anomalies for an arbi trary flavour group, we derive the anomalous constitutive relations in arbitrary even dimensions. We demonstrate that our results agree with the constraints on anomaly governed transport derived hitherto using a local version of the second law of thermodynamics. The construction crucially uses the anomaly inflow mechanism and involves a novel thermofield double construction. In particular, we show that the anomalous Ward identities necessitate non-trivial interaction between the two parts of the Schwinger-Keldysh contour.
We generalize the coset procedure of homogeneous spacetimes in (pseudo-)Riemannian geometry to non-Lorentzian geometries. These are manifolds endowed with nowhere vanishing invertible vielbeins that transform under local non-Lorentzian tangent space transformations. In particular, we focus on nonrelativistic symmetry algebras that give rise to (torsional) Newton-Cartan geometries, for which we demonstrate how the Newton-Cartan metric complex is determined by degenerate co- and contravariant symmetric bilinear forms on the coset. In specific cases, we also show the connection of the resulting nonrelativistic coset spacetimes to pseudo-Riemannian cosets via Inonu-Wigner contraction of relativistic algebras as well as null reduction. Our construction is of use for example when considering limits of the AdS/CFT correspondence in which nonrelativistic spacetimes appear as gravitational backgrounds for nonrelativistic string or gravity theories.
In $d$ dimensions, the model for a massless $p$-form in curved space is known to be a reducible gauge theory for $p>1$, and therefore its covariant quantisation cannot be carried out using the standard Faddeev-Popov scheme. However, adding a mass ter m and also introducing a Stueckelberg reformulation of the resulting $p$-form model, one ends up with an irreducible gauge theory which can be quantised `a la Faddeev and Popov. We derive a compact expression for the massive $p$-form effective action, $Gamma^{(m)}_p$, in terms of the functional determinants of Hodge-de Rham operators. We then show that the effective actions $Gamma^{(m)}_p$ and $Gamma^{(m)}_{d-p-1}$ differ by a topological invariant. This is a generalisation of the known result in the massless case that the effective actions $Gamma_p$ and $Gamma_{d-p-2}$ coincide modulo a topological term. Finally, our analysis is extended to the case of massive super $p$-forms coupled to background ${cal N}=1$ supergravity in four dimensions. Specifically, we study the quantum dynamics of the following massive super $p$-forms: (i) vector multiplet; (ii) tensor multiplet; and (iii) three-form multiplet. It is demonstrated that the effective actions of the massive vector and tensor multiplets coincide. The effective action of the massive three-form is shown to be a sum of those corresponding to two massive scalar multiplets, modulo a topological term.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا