ﻻ يوجد ملخص باللغة العربية
We evaluate the effective actions of supersymmetric matrix models on fuzzy S^2times S^2 up to the two loop level. Remarkably it turns out to be a consistent solution of IIB matrix model. Based on the power counting and SUSY cancellation arguments, we can identify the t Hooft coupling and large N scaling behavior of the effective actions to all orders. In the large N limit, the quantum corrections survive except in 2 dimensional limits. They are O(N) and O(N^{4over 3}) for 4 and 6 dimensional spaces respectively. We argue that quantum effects single out 4 dimensionality among fuzzy homogeneous spaces.
We show that joinings of higher rank torus actions on S-arithmetic quotients of semi-simple or perfect algebraic groups must be algebraic.
We study chiral anomalies in $mathcal N=(0, 1)$ and $(0, 2)$ two-dimensional minimal sigma models defined on generic homogeneous spaces $G/H$. Such minimal theories contain only (left) chiral fermions and in certain cases are inconsistent because of
We argue that an effective field theory of local fluid elements captures the constraints on hydrodynamic transport stemming from the presence of quantum anomalies in the underlying microscopic theory. Focussing on global current anomalies for an arbi
We generalize the coset procedure of homogeneous spacetimes in (pseudo-)Riemannian geometry to non-Lorentzian geometries. These are manifolds endowed with nowhere vanishing invertible vielbeins that transform under local non-Lorentzian tangent space
In $d$ dimensions, the model for a massless $p$-form in curved space is known to be a reducible gauge theory for $p>1$, and therefore its covariant quantisation cannot be carried out using the standard Faddeev-Popov scheme. However, adding a mass ter