ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fuzzy Disc

119   0   0.0 ( 0 )
 نشر من قبل Fedele Lizzi
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a finite dimensional matrix model approximation to the algebra of functions on a disc based on noncommutative geometry. The algebra is a subalgebra of the one characterizing the noncommutative plane with a * product and depends on two parameters N and theta. It is composed of functions which decay exponentially outside a disc. In the limit in which the size of the matrices goes to infinity and the noncommutativity parameter goes to zero the disc becomes sharper. We introduce a Laplacian defined on the whole algebra and calculate its eigenvalues. We also calculate the two--points correlation function for a free massless theory (Greens function). In both cases the agreement with the exact result on the disc is very good already for relatively small matrices. This opens up the possibility for the study of field theories on the disc with nonperturbative methods. The model contains edge states, a fact studied in a similar matrix model independently introduced by Balachandran, Gupta and Kurkcuoglu.



قيم البحث

اقرأ أيضاً

80 - F. Lizzi , P. Vitale , A. Zampini 2003
We present a brief review of the fuzzy disc, the finite algebra approximating functions on a disc, which we have introduced earlier. We also present a comparison with recent papers of Balachandran, Gupta and Kurkc{c}{u}ov{g}lu, and of Pinzul and Ster n, aimed at the discussion of edge states of a Chern-Simons theory.
The fuzzy disc is a discretization of the algebra of functions on the two dimensional disc using finite matrices which preserves the action of the rotation group. We define a $varphi^4$ scalar field theory on it and analyze numerically for three diff erent limits for the rank of the matrix going to infinity. The numerical simulations reveal three different phases: uniform and disordered phases already the present in the commutative scalar field theory and a nonuniform ordered phase as a noncommutative effects. We have computed the transition curves between phases and their scaling. This is in agreement with studies on the fuzzy sphere, although the speed of convergence for the disc seems to be better. We have performed also three the limits for the theory in the cases of the theory going to the commutative plane or commutative disc. In this case the theory behaves differently, showing the intimate relationship between the nonuniform phase and noncommutative geometry.
152 - Taichi Itoh , Hiroshi Kato 1998
We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term, considering the screening effect of $N$ flavor fermions. We find a new phase of the vacuum, in which both the fermion mass and a magnetic field are dynamical ly generated, when the coefficient of the CS term $kappa$ equals $N e^2/4 pi$. The resultant vacuum becomes the finite-density state half-filled by fermions. For $kappa=N e^2/2 pi$, we find the fermion remains massless and only the magnetic field is induced. For $kappa=0$, spontaneous magnetization does not occur and should be regarded as an external field.
In the previous paper hep-th/0312199 we studied the t Hooft-Polyakov (TP) monopole configuration in the U(2) gauge theory on the fuzzy 2-sphere and showed that it has a nonzero topological charge in the formalism based on the Ginsparg-Wilson relation . In this paper, by showing that the TP monopole configuration is stabler than the U(2) gauge theory without any condensation in the Yang-Mills-Chern-Simons matrix model, we will present a mechanism for dynamical generation of a nontrivial index. We further analyze the instability and decay processes of the U(2) gauge theory and the TP monopole configuration.
We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity pa rameter. We construct a family of soliton solutions which are stable and which converge to solitons on the Moyal plane in an appropriate limit. These solutions are rotationally symmetric about an axis and have no allowed deformations. Solitons that describe multiple lumps on the fuzzy sphere can also be constructed but they are not stable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا