ﻻ يوجد ملخص باللغة العربية
We introduce a finite dimensional matrix model approximation to the algebra of functions on a disc based on noncommutative geometry. The algebra is a subalgebra of the one characterizing the noncommutative plane with a * product and depends on two parameters N and theta. It is composed of functions which decay exponentially outside a disc. In the limit in which the size of the matrices goes to infinity and the noncommutativity parameter goes to zero the disc becomes sharper. We introduce a Laplacian defined on the whole algebra and calculate its eigenvalues. We also calculate the two--points correlation function for a free massless theory (Greens function). In both cases the agreement with the exact result on the disc is very good already for relatively small matrices. This opens up the possibility for the study of field theories on the disc with nonperturbative methods. The model contains edge states, a fact studied in a similar matrix model independently introduced by Balachandran, Gupta and Kurkcuoglu.
We present a brief review of the fuzzy disc, the finite algebra approximating functions on a disc, which we have introduced earlier. We also present a comparison with recent papers of Balachandran, Gupta and Kurkc{c}{u}ov{g}lu, and of Pinzul and Ster
The fuzzy disc is a discretization of the algebra of functions on the two dimensional disc using finite matrices which preserves the action of the rotation group. We define a $varphi^4$ scalar field theory on it and analyze numerically for three diff
We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term, considering the screening effect of $N$ flavor fermions. We find a new phase of the vacuum, in which both the fermion mass and a magnetic field are dynamical
In the previous paper hep-th/0312199 we studied the t Hooft-Polyakov (TP) monopole configuration in the U(2) gauge theory on the fuzzy 2-sphere and showed that it has a nonzero topological charge in the formalism based on the Ginsparg-Wilson relation
We study scalar solitons on the fuzzy sphere at arbitrary radius and noncommutativity. We prove that no solitons exist if the radius is below a certain value. Solitons do exist for radii above a critical value which depends on the noncommutativity pa