ﻻ يوجد ملخص باللغة العربية
By considering the continuum scaling limit of the $A_{4}$ RSOS lattice model of Andrews-Baxter-Forrester with integrable boundaries, we derive excited state TBA equations describing the boundary flows of the tricritical Ising model. Fixing the bulk weights to their critical values, the integrable boundary weights admit a parameter $xi $ which plays the role of the perturbing boundary field $phi_{1,3}$ and induces the renormalization group flow between boundary fixed points. The boundary TBA equations determining the RG flows are derived in the $mathcal{B}_{(1,2)}to mathcal{B}_{(2,1)}$ example. The induced map between distinct Virasoro characters of the theory are specified in terms of distribution of zeros of the double row transfer matrix.
We consider the tricritical Ising model on a strip or cylinder under the integrable perturbation by the thermal $phi_{1,3}$ boundary field. This perturbation induces five distinct renormalization group (RG) flows between Cardy type boundary condition
TBA integral equations are proposed for 1-particle states in the sausage- and SS-models and their $sigma$-model limits. Combined with the ground state TBA equations the exact mass gap is computed in the O(3) and O(4) nonlinear $sigma$-model and the r
We study the spectrum of the scaling Lee-Yang model on a finite interval from two points of view: via a generalisation of the truncated conformal space approach to systems with boundaries, and via the boundary thermodynamic Bethe ansatz. This allows
We study the massless flows described by the staircase model introduced by Al.B. Zamolodchikov through the analytic continuation of the sinh-Gordon S-matrix, focusing on the renormalisation group flow from the tricritical to the critical Ising model.
In this paper we give an exact infinite-series expression for the bi-partite entanglement entropy of the quantum Ising model both with a boundary magnetic field and in infinite volume. This generalizes and extends previous results involving the prese