ﻻ يوجد ملخص باللغة العربية
We construct a large-N twisted reduced model of the four-dimensional super Yang-Mills theory coupled to one adjoint matter. We first consider a non-commutative version of the four-dimensional superspace, and then give the mapping rule between matrices and functions on this space explicitly. The supersymmetry is realized as a part of the internal $U(infty)$ gauge symmetry in this reduced model. Our reduced model can be compared with the Dijkgraaf-Vafa theory that claims the low-energy glueball superpotential of the original gauge theory is governed by a simple one-matrix model. We show that their claim can be regarded as the large-N reduction in the sense that the one-matrix model they proposed can be identified with our reduced model. The map between matrices and functions enables us to make direct identities between the free energies and correlators of the gauge theory and the matrix model. As a by-product, we can give a natural explanation for the unconventional treatment of the one-matrix model in the Dijkgraaf-Vafa theory where eigenvalues lie around the top of the potential.
We show how a recently proposed large $N$ duality in the context of type IIA strings with ${cal N}=1$ supersymmetry in 4 dimensions can be derived from purely geometric considerations by embedding type IIA strings in M-theory. The phase structure of
We study four dimensional large-N SU(N) Yang-Mills theory coupled to adjoint overlap fermions on a single site lattice. Lattice simulations along with perturbation theory show that the bare quark mass has to be taken to zero as one takes the continuu
We propose a simple geometric interpretation for gauge/gravity duality, that relates the large-$N$ limit of gauge theory to the second quantization of string theory.
We review the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this corres
We construct a version of Dijkgraaf-Witten theory based on a compact abelian Lie group within the formalism of Turaevs homotopy quantum field theory. As an application we show that the 2+1-dimensional theory based on U(1) classifies lens spaces up to homotopy type.