ترغب بنشر مسار تعليمي؟ اضغط هنا

Spacetime Quotients, Penrose Limits and Conformal Symmetry Restoration

225   0   0.0 ( 0 )
 نشر من قبل Mohammad Sheikh-Jabbari
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the Penrose limit of AdS_5 orbifolds. The orbifold can be either in the pure spatial directions or space and time directions. For the AdS_5/Gammatimes S^5 spatial orbifold we observe that after the Penrose limit we obtain the same result as the Penrose limit of AdS_5times S^5/Gamma. We identify the corresponding BMN operators in terms of operators of the gauge theory on Rtimes S^3/Gamma. The semi-classical description of rotating strings in these backgrounds have also been studied. For the spatial AdS orbifold we show that in the quadratic order the obtained action for the fluctuations is the same as that in S^5 orbifold, however, the higher loop correction can distinguish between two cases.

قيم البحث

اقرأ أيضاً

Ladder operators can be useful constructs, allowing for unique insight and intuition. In fact, they have played a special role in the development of quantum mechanics and field theory. Here, we introduce a novel type of ladder operators, which map a scalar field onto another massive scalar field. We construct such operators, in arbitrary dimensions, from closed conformal Killing vector fields, eigenvectors of the Ricci tensor. As an example, we explicitly construct these objects in anti-de Sitter spacetime (AdS) and show that they exist for masses above the Breitenlohner-Freedman (BF) bound. Starting from a regular seed solution of the massive Klein-Gordon equation (KGE), mass ladder operators in AdS allow one to build a variety of regular solutions with varying boundary condition at spatial infinity. We also discuss mass ladder operator in the context of spherical harmonics, and the relation between supersymmetric quantum mechanics and so-called Aretakis constants in an extremal black hole.
We show that it is not possible to UV-complete certain low-energy effective theories with spontaneously broken space-time symmetries by embedding them into linear sigma models, that is, by adding radial modes and restoring the broken symmetries. When such a UV completion is not possible, one can still raise the cutoff up to arbitrarily higher energies by adding fields that transform non-linearly under the broken symmetries, that is, new Goldstone bosons. However, this (partial) UV completion does not necessarily restore any of the broken symmetries. We illustrate this point by considering a concrete example in which a combination of space-time and internal symmetries is broken down to a diagonal subgroup. Along the way, we clarify a recently proposed interpretation of inverse Higgs constraints as gauge-fixing conditions.
99 - Andreas Karch , Amir Raz 2020
We construct field theories in $2+1$ dimensions with multiple conformal symmetries acting on only one of the spatial directions. These can be considered a conformal extension to subsystem scale invariances, borrowing the language often used for fractons.
We make use of the conformal compactification of Minkowski spacetime $M^{#}$ to explore a way of describing general, nonlinear Maxwell fields with conformal symmetry. We distinguish the inverse Minkowski spacetime $[M^{#}]^{-1}$ obtained via conforma l inversion, so as to discuss a doubled compactified spacetime on which Maxwell fields may be defined. Identifying $M^{#}$ with the projective light cone in $(4+2)$-dimensional spacetime, we write two independent conformal-invariant functionals of the $6$-dimensional Maxwellian field strength tensors -- one bilinear, the other trilinear in the field strengths -- which are to enter general nonlinear constitutive equations. We also make some remarks regarding the dimensional reduction procedure as we consider its generalization from linear to general nonlinear theories.
265 - J.W. van Holten 2020
This paper addresses the fate of extended space-time symmetries, in particular conformal symmetry and supersymmetry, in two-dimensional Rindler space-time appropriate to a uniformly accelerated non-inertial frame in flat 1+1-dimensional space-time. G enerically, in addition to a conformal co-ordinate transformation, the transformation of fields from Minkowski to Rindler space is accompanied by local conformal and Lorentz transformations of the components, which also affect the Bogoliubov transformations between the associated Fock spaces. I construct these transformations for massless scalars and spinors, as well as for the ghost and super-ghost fields necessary in theories with local conformal and supersymmetries, as arising from coupling to 2-D gravity or supergravity. Cancellation of the anomalies in Minkowski and in Rindler space requires theories with the well-known critical spectrum of particles arising in string theory in the limit of infinite strings, and is relevant for the equivalence of Minkowski and Rindler frame theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا