ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Waves from Braneworld Inflation

73   0   0.0 ( 0 )
 نشر من قبل Andrei V. Frolov
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the generation of primordial gravitational waves from inflation in braneworld cosmologies with extra dimensions. Advantage of using primordial gravitational waves to probe extra dimensions is that their theory depends only on the geometry, not on the microscopic models of inflation and stabilization. D(D-3)/2 degrees of freedom of the free bulk gravitons are projected onto the 3d brane as tensor, vector and scalar modes. We found the following no-go results for a generic geometry of a five (or D) dimensional warped metric with four dimensional de Sitter (inflationary) slices and two (or one) edge of the world branes: Massive KK graviton modes are not generated from inflation (with the Hubble parameter H) due to the gap in the KK spectrum; the universal lower bound on the gap is sqrt{3/2} H. Massless scalar and vector projections of the bulk gravitons are absent, unlike in geometries with KK compactification. A massless 4d tensor mode is generated from inflation with the amplitude H/M_P, where M_P is the effective Planck mass during inflation, derived from the D dimensional fundamental mass M_S and the volume of the inner dimensions. However, M_P for a curved dS braneworld may differ from that of the flat brane at low energies, either due to the H-dependence of the inner space volume or variations in the brane separation before stabilization. Thus the amplitude of gravitational waves from inflation in braneworld cosmology may be different from that predicted by inflation in 4d theory.

قيم البحث

اقرأ أيضاً

We calculate the amplitude of gravitational waves produced by inflation on a de Sitter brane embedded in five-dimensional anti-de Sitter bulk spacetime, extending previous calculations in Randall-Sundrum type cosmology to include the effect of induce d gravity corrections on the brane. These corrections arise via a term in the brane action that is proportional to the brane Ricci scalar. We find that, as in the Randall-Sundrum case, there is a mass gap between the discrete zero-mode and a continuum of massive bulk modes, which are too heavy to be excited during inflation. We give the normalization of the zero-mode as a function of the Hubble rate on the brane and are thus able to calculate the high energy correction to the spectrum of gravitational wave (tensor) modes excited on large scales during inflation from initial vacuum fluctuations on small scales. We also calculate the amplitude of density (scalar) perturbations expected due to inflaton fluctuations on the brane, and show that the usual four-dimensional consistency relation for the tensor/scalar ratio remains valid for brane inflation with induced gravity corrections.
We present a two stage hybrid inflationary scenario in non-minimal supergravity which can predict values of the tensor-to-scalar ratio of the order of few times 0.01. For the parameters considered, the underlying supersymmetric particle physics model possesses two inflationary paths, the trivial and the semi-shifted one. The trivial path is stabilized by supergravity corrections and supports a first stage of inflation with a limited number of e-foldings. The tensor-to-scalar ratio can become appreciable while the value of the scalar spectral index remains acceptable as a result of the competition between the relatively mild supergravity corrections and the strong radiative corrections to the inflationary potential. The additional number of e-foldings required for solving the puzzles of hot big bang cosmology are generated by a second stage of inflation taking place along the semi-shifted path. This is possible only because the semi-shifted path is almost perpendicular to the trivial one and, thus, not affected by the strong radiative corrections along the trivial path and also because the supergravity effects remain mild. The requirement that the running of the scalar spectral index remains acceptable limits the possible values of the tensor-to-scalar ratio not to exceed about 0.05. Our model predicts the formation of an unstable string-monopole network, which may lead to detectable gravity wave signatures in future space-based laser interferometer observations.
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus repr esenting an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power-spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio $r$ and tensor spectral index $n_{rm T}$. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.
Measuring the primordial power spectrum on small scales is a powerful tool in inflation model building, yet constraints from Cosmic Microwave Background measurements alone are insufficient to place bounds stringent enough to be appreciably effective. For the very small scale spectrum, those which subtend angles of less than 0.3 degrees on the sky, an upper bound can be extracted from the astrophysical constraints on the possible production of primordial black holes in the early universe. A recently discovered observational by-product of an enhanced power spectrum on small scales, induced gravitational waves, have been shown to be within the range of proposed space based gravitational wave detectors; such as NASAs LISA and BBO detectors, and the Japanese DECIGO detector. In this paper we explore the impact such a detection would have on models of inflation known to lead to an enhanced power spectrum on small scales, namely the Hilltop-type and running mass models. We find that the Hilltop-type model can produce observable induced gravitational waves within the range of BBO and DECIGO for integral and fractional powers of the potential within a reasonable number of e-folds. We also find that the running mass model can produce a spectrum within the range of these detectors, but require that inflation terminates after an unreasonably small number of e-folds. Finally, we argue that if the thermal history of the Universe were to accomodate such a small number of e-folds the Running Mass Model can produce Primordial Black Holes within a mass range compatible with Dark Matter, i.e. within a mass range 10^{20}g< M_{BH}<10^{27}g.
62 - J.-F. Dufaux 2004
Braneworld inflation is a phenomenology related to string theory that describes high-energy modifications to general relativistic inflation. The observable universe is a braneworld embedded in 5-dimensional anti de Sitter spacetime. Whe the 5-dimensi onal action is Einstein-Hilbert, we have a Randall-Sundrum type braneworld. The amplitude of tensor and scalar perturbations from inflation is strongly increased relative to the standard results, although the ratio of tensor to scalar amplitudes still obeys the standard consistency relation. If a Gauss-Bonnet term is included in the action, as a high-energy correction motivated by string theory, we show that there are important changes to the Randall-Sundrum case. We give an exact analysis of the tensor perturbations. They satisfy the same wave equation and have the same spectrum as in the Randall-Sundrum case, but the Gauss-Bonnet change to the junction conditions leads to a modified amplitude of gravitational waves. The amplitude is no longer monotonically increasing with energy scale, but decreases asymptotically after an initial rise above the standard level. Using an approximation that neglects bulk effects, we show that the amplitude of scalar perturbations has a qualitatively similar behaviour to the tensor amplitude. In addition, the tensor to scalar ratio breaks the standard consistency relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا