ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating Small Numbers by Tunneling in Multi-Throat Compactifications

93   0   0.0 ( 0 )
 نشر من قبل Eva Silverstein
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A generic F-theory compactification containing many D3 branes develops multiple brane throats. The interaction of observers residing inside different throats involves tunneling suppression and, as a result, is very weak. This suggests a new mechanism for generating small numbers in Nature. One application is to the hierarchy problem: large supersymmetry breaking near the unification scale inside a shallow throat causes TeV-scale SUSY-breaking inside the standard-model throat. Another application, inspired by nuclear-decay, is in designing naturally long-lived particles: a cold dark matter particle residing near the standard model brane decays to an approximate CFT-state of a longer throat within a Hubble time. This suggests that most of the mass of the universe today could consist of CFT-matter and may soften structure formation at sub-galactic scales. The tunneling calculation demonstrates that the coupling between two throats is dominated by higher dimensional modes and consequently is much larger than a naive application of holography might suggest.

قيم البحث

اقرأ أيضاً

Generic classes of string compactifications include ``brane throats emanating from the compact dimensions and separated by effective potential barriers raised by the background gravitational fields. The interaction of observers inside different throa ts occurs via tunnelling and is consequently weak. This provides a new mechanism for generating small numbers in Nature. We apply it to the hierarchy problem, where supersymmetry breaking near the unification scale causes TeV sparticle masses inside the standard model throat. We also design naturally long-lived cold dark matter which decays within a Hubble time to the approximate conformal matter of a long throat. This may soften structure formation at galactic scales and raises the possibility that much of the dark matter of the universe is conformal matter. Finally, the tunnelling rate shows that the coupling between throats, mediated by bulk modes, is stronger than a naive application of holography suggests.
We identify instantons representing vacuum decay in a 6-dimensional toy model for string theory flux compactifications, with the two extra dimensions compactified on a sphere. We evaluate the instanton action for tunneling between different flux vacu a, as well as for the decompactification decay channel. The bubbles resulting from flux tunneling have an unusual structure. They are bounded by two-dimensional branes, which are localized in the extra dimensions. This has important implications for bubble collisions.
We study multi-field tunneling using exact solutions for additive potentials. We introduce a binomial potential with non-integer powers that could be considered a generalization of the $4D$ Fubini instanton potential. Using scaling arguments, we show that for multi-field potentials taller and wider barriers may still lead to a smaller bounce action.
Oscillating moduli fields can support a cosmological scaling solution in the presence of a perfect fluid when the scalar field potential satisfies appropriate conditions. We examine when such conditions arise in higher-dimensional, non-linear sigma-m odels that are reduced to four dimensions under a generalized Scherk-Schwarz compactification. We show explicitly that scaling behaviour is possible when the higher-dimensional action exhibits a global SL(n,R) or O(2,2) symmetry. These underlying symmetries can be exploited to generate non-trivial scaling solutions when the moduli fields have non-canonical kinetic energy. We also consider the compactification of eleven-dimensional vacuum Einstein gravity on an elliptic twisted torus.
We consider warped compactifications in (4+d)-dimensional theories, with four dimensional de Sitter dS_4 vacua (with Hubble parameter H) and with a compact internal space. After introducing a gauge-invariant formalism for the generic metric perturbat ions of these backgrounds, we focus on modes which are scalar with respect to dS_4. The physical eigenmasses of these modes acquire a large universal tachyonic contribution -12d/(d+2) H^2, independently of the stabilization mechanism for the compact space, in addition to the usual KK masses, which instead encode the effects of the stabilization. General arguments, as well as specific examples, lead us to conjecture that, for sufficiently large dS curvature, the compactified geometry becomes gravitationally unstable due to the tachyonic growth of the scalar perturbations. This mean that for any stabilization mechanism the curvature of the dS geometry cannot exceed some critical value. We relate this effect to the anisotropy of the bulk geometry and suggest the end points of the instability. Of relevance for inflationary cosmology, the perturbations of the bulk metric inevitably induce a new modulus field, which describes the conformal fluctuations of the 4 dimensional metric. If this mode is light during inflation, the induced conformal fluctuations will be amplified with a scale free spectrum and with an amplitude which is disentangled from the standard result of slow-roll inflation. The conformal 4d metric fluctuations give rise to a very generic realization of the mechanism of modulated cosmological fluctuations, related to spatial variation of couplings during (p)reheating after inflation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا