ﻻ يوجد ملخص باللغة العربية
We construct the lattice gauge theory of the group G_N, the semidirect product of the permutation group S_N with U(1)^N, on an arbitrary Riemann surface. This theory describes the branched coverings of a two-dimensional target surface by strings carrying a U(1) gauge field on the world sheet. These are the non-supersymmetric Matrix Strings that arise in the unitary gauge quantization of a generalized two-dimensional Yang-Mills theory. By classifying the irreducible representations of G_N, we give the most general formulation of the lattice gauge theory of G_N, which includes arbitrary branching points on the world sheet and describes the splitting and joining of strings.
We study simple branched coverings of degree d of the 2- and 3- dimensional sphere branched over oriented links. We demonstrate how to use braid charts to develop embeddings of these into $S^k times D^2$ for $k=2,3 when $d=2,3$. This is an initial pa
We study the equations of black strings in spacetimes of arbitrary dimensions with a negative cosmological constant and construct numerically non uniform black strings solutions. Our results suggest the existence of a localised black hole in asymptot
It is proposed that a family of Jackiw-Teitelboim supergravites, recently discussed in connection with matrix models by Stanford and Witten, can be given a complete definition, to all orders in the topological expansion and beyond, in terms of a spec
Light-cone gauge NSR string theory in noncritical dimensions should correspond to a string theory with a nonstandard longitudinal part. Supersymmetrizing the bosonic case [arXiv:0909.4675], we formulate a superconformal worldsheet theory for the long
The Frenet equation governs the extrinsic geometry of a string in three-dimensional ambient space in terms of the curvature and torsion, which are both scalar functions under string reparameterisations. The description engages a local SO(2) gauge sym