ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bestiary of Higher Dimensional Taub-NUT-AdS Spacetimes

76   0   0.0 ( 0 )
 نشر من قبل Adel M. Ahmed
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a menagerie of solutions to the vacuum Einstein equations in six, eight and ten dimensions. These solutions describe spacetimes which are either locally asymptotically adS or locally asymptotically flat, and which have non-trivial topology. We discuss the global structure of these solutions, and their relevance within the context of M-theory.



قيم البحث

اقرأ أيضاً

We study the behavior of phase transitions for the four-dimensional charged Taub-NUT-AdS spacetime with the Newman-Unti-Tamburino (NUT) parameter interpreted as the thermodynamic multihair in the extended thermodynamic phase space, and mainly focus o n the effects of the NUT parameter on the phase transitions. We find that there is an upper bound on the value of the NUT parameter beyond which the corresponding physical inflection point or critical point will not exist, and the thermodynamic trihair interpretation of the NUT parameter would admit a little larger upper bound than the thermodynamic bihair interpretation. Moreover, as long as the NUT parameter is vanishingly small, the analogy to the van der Waals liquid/gas phase transition is valid irrespective of the multihair characteristics of the NUT parameter. However, as the NUT parameter increases to be comparable to the electric charge, such analogy to the van der Waals system will be broken, and the corresponding inflection point is not a thermodynamic critical point any more. For a large NUT parameter, there are frequent occurrences of the zeroth order phase transition in the case of the thermodynamic bihair interpretation, while only the first order phase transition happens in the case of the thermodynamic trihair interpretation.
Writing the metric of an asymptotically flat spacetime in Bondi coordinates provides an elegant way of formulating the Einstein equation as a characteristic value problem. In this setting, we find that a specific class of asymptotically flat spacetim es, including stationary solutions, contains a Maxwell gauge field as free data. Choosing this gauge field to correspond to the Dirac monopole, we derive the Taub-NUT solution in Bondi coordinates.
The interpretation of a family of electrovacuum stationary Taub-NUT-type fields in terms of finite charged perfect fluid disks is presented. The interpretation is mades by means of an inverse problem approach used to obtain disk sources of known solu tions of the Einstein or Einstein-Maxwell equations. The diagonalization of the energy-momentum tensor of the disks is facilitated in this case by the fact that it can be written as an upper right triangular matrix. We find that the inclusion of electromagnetic fields changes significatively the different material properties of the disks and so we can obtain, for some values of the parameters, finite charged perfect fluid disks that are in agreement with all the energy conditions.
We show that the first law for the rotating Taub-NUT is straightforwardly established with the surface charge method. The entropy is explicitly found as a charge, and its value is not proportional to the horizon area. We conclude that there are unavo idable contributions from the Misner strings to the charges, still, the mass and angular momentum gets standard values. However, there are no independent charges associated with the Misner strings.
Using the extended forms of the Heisenberg uncertainty principle from string theory and the quantum gravity theory, we drived Hawking temperature of a Taub-Nut-(A)dS black hole. In spite of their distinctive natures such as asymptotically locally fla t and breakdown of the area theorem of the horizon for the black holes, we show that the corrections to Hawking temperature by the generaliz
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا