ترغب بنشر مسار تعليمي؟ اضغط هنا

Density perturbations in the brane-world

107   0   0.0 ( 0 )
 نشر من قبل Christopher Gordon
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In Randall-Sundrum-type brane-world cosmologies, density perturbations generate Weyl curvature in the bulk, which in turn backreacts on the brane via stress-energy perturbations. On large scales, the perturbation equations contain a closed system on the brane, which may be solved without solving for the bulk perturbations. Bulk effects produce a non-adiabatic mode, even when the matter perturbations are adiabatic, and alter the background dynamics. As a consequence, the standard evolution of large-scale fluctuations in general relativity is modified. The metric perturbation on large-scales is not constant during high-energy inflation. It is constant during the radiation era, except at most during the very beginning, if the energy is high enough.

قيم البحث

اقرأ أيضاً

We investigate the scalar metric perturbations about a de Sitter brane universe in a 5-dimensional anti de Sitter bulk. We compare the master-variable formalism, describing metric perturbations in a 5-dimensional longitudinal gauge, with results in a Gaussian normal gauge. For a vacuum brane (with constant brane tension) there is a continuum of normalizable Kaluza-Klein modes, with m>3H/2, which remain in the vacuum state. A light radion mode, with m=sqrt{2}H, satisfies the boundary conditions for two branes but is not normalizable in the single-brane case. When matter is introduced (as a test field) on the brane, this mode, together with the zero-mode and an infinite ladder of discrete tachyonic modes, become normalizable. However, the boundary condition requires the self-consistent 4-dimensional evolution of scalar field perturbations on the brane and the dangerous growing modes are not excited. These normalizable discrete modes introduce corrections at first-order to the scalar field perturbations computed in a slow-roll expansion. On super-Hubble scales, the correction is smaller than slow-roll corrections to the de Sitter background. However on small scales the corrections can become significant.
87 - A. A. Andrianov 2005
We present a non-compact (4 + 1) dimensional model with a local strong four-fermion interaction supplementing it with gravity. In the strong coupling regime it reveals the spontaneous translational symmetry breaking which eventually leads to the form ation of domain walls, or thick 3-branes, embedded in the AdS-5 manifold. To describe this phenomenon we construct the appropriate low-energy effective Action and find kink-like vacuum solutions in the quasi-flat Riemannian metric. We discuss the generation of ultra-low-energy (3 + 1) dimensional physics and we establish the relation among the bulk five dimensional gravitational constant, the brane Newtons constants and the curvature of AdS-5 space-time. The plausible relation between the compositeness scale of the scalar matter and the symmetry breaking scale is shown to support the essential decoupling of branons, the scalar fluctuations of the brane, from the Standard Model matter, supporting their possible role in the dark matter saturation. The induced cosmological constant on the brane does vanish due to exact cancellation of matter and gravity contributions.
We consider a model with two parallel (positive tension) 3-branes separated by a distance $L$ in 5-dimensional spacetime. If the interbrane space is anti-deSitter, or is not precisely anti-deSitter but contains no event horizons, the effective 4-dime nsional cosmological constant seen by observers on one of the branes (chosen to be the visible brane) becomes exponentially small as $L$ grows large.
We calculate the amplitude of gravitational waves produced by inflation on a de Sitter brane embedded in five-dimensional anti-de Sitter bulk spacetime, extending previous calculations in Randall-Sundrum type cosmology to include the effect of induce d gravity corrections on the brane. These corrections arise via a term in the brane action that is proportional to the brane Ricci scalar. We find that, as in the Randall-Sundrum case, there is a mass gap between the discrete zero-mode and a continuum of massive bulk modes, which are too heavy to be excited during inflation. We give the normalization of the zero-mode as a function of the Hubble rate on the brane and are thus able to calculate the high energy correction to the spectrum of gravitational wave (tensor) modes excited on large scales during inflation from initial vacuum fluctuations on small scales. We also calculate the amplitude of density (scalar) perturbations expected due to inflaton fluctuations on the brane, and show that the usual four-dimensional consistency relation for the tensor/scalar ratio remains valid for brane inflation with induced gravity corrections.
We calculate the entanglement entropy of scalar perturbations due to gravitational non-linearities present in any model of canonically-coupled, single-field ekpyrosis. Specifically, we focus on a recent model of improved ekpyrosis which is able to ge nerate a scale-invariant power spectrum of curvature perturbations and gravitational waves as well as have a non-singular bounce due to an S-brane at the end of ekpyrotic contraction. By requiring that the entanglement entropy remians subdominant to the thermal entropy produced during reheating, we get an upper bound on the energy scale of the bounce.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا