ترغب بنشر مسار تعليمي؟ اضغط هنا

N=1 Supersymmetric Renormalization Group Flows from IIB Supergravity

80   0   0.0 ( 0 )
 نشر من قبل Krzysztof Pilch
 تاريخ النشر 2000
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider N=1 supersymmetric renormalization group flows of N=4 Yang-Mills theory from the perspective of ten-dimensional IIB supergravity. We explicitly construct the complete ten-dimensional lift of the flow in which exactly one chiral superfield becomes massive (the LS flow). We also examine the ten-dimensional metric and dilaton configurations for the ``super-QCD flow (the GPPZ flow) in which all chiral superfields become massive. We show that the latter flow generically gives rise to a dielectric 7-brane in the infra-red, but the solution contains a singularity that may be interpreted as a ``duality averaged ring distribution of 5-branes wrapped on S^2. At special values of the parameters the singularity simplifies to a pair of S-dual branes with (p,q) charge (1,pm 1).

قيم البحث

اقرأ أيضاً

103 - N.P. Warner 1999
The use of gauged ${cal N} = 8$ supergravity as a tool in studying the AdS/CFT correspondence for ${cal N} = 4$ Yang-Mills theory is reviewed. The supergravity potential implies a non-trivial, supersymmetric IR fixed point, and the flow to this fixed point is described in terms of a supergravity kink. The results agree perfectly with earlier, independent field theory results. A supergravity inspired $c$-function, and corresponding $c$-theorem is discussed for general flows, and the simplified form for supersymmetric flows is also given. Flows along the Coulomb branch of the Yang-Mills theory are also described from the five-dimensional perspective.
We show that there is a non-trivial relationship between the dilaton of IIB supergravity, and the coset of scalar fields in five-dimensional, gauged N=8 supergravity. This has important consequences for the running of the gauge coupling in massive pe rturbations of the AdS/CFT correspondence. We conjecture an exact analytic expression for the ten-dimensional dilaton in terms of five-dimensional quantities, and we test this conjecture. Specifically, we construct a family of solutions to IIB supergravity that preserve half of the supersymmetries, and are lifts of supersymmetric flows in five-dimensional, gauged N=8 supergravity. Via the AdS/CFT correspondence these flows correspond to softly broken N=4, large N Yang-Mills theory on part of the Coulomb branch of N=2 supersymmetric Yang-Mills. Our solutions involve non-trivial backgrounds for all the tensor gauge fields as well as for the dilaton and axion.
We present a new compactification of chiral, N=2 ten-dimensional supergravity down to five dimensions and show that it corresponds to the N=2 supersymmetric critical point of five-dimensional, N=8 gauged supergravity found in [KPW]. This solution pre sented here is of particular significance because it involves non-zero tensor gauge fields and, via the AdS/CFT correspondence, is dual to the non-trivial N=1 supersymmetric fixed point of N=4 Yang-Mills theory.
We investigate a family of SU(3)$times$U(1)$times$U(1)-invariant holographic flows and Janus solutions obtained from gauged $mathcal{N}=8$ supergravity in four dimensions. We give complete details of how to use the uplift formulae to obtain the corre sponding solutions in M theory. While the flow solutions appear to be singular from the four-dimensional perspective, we find that the eleven-dimensional solutions are much better behaved and give rise to interesting new classes of compactification geometries that are smooth, up to orbifolds, in the infra-red limit. Our solutions involve new phases in which M2 branes polarize partially or even completely into M5 branes. We derive the eleven-dimensional supersymmetries and show that the eleven-dimensional equations of motion and BPS equations are indeed satisfied as a consequence of their four-dimensional counterparts. Apart from elucidating a whole new class of eleven-dimensional Janus and flow solutions, our work provides extensive and highly non-trivial tests of the recently-derived uplift formulae.
The background underlying the $eta$-deformed $AdS_5times S^5$ sigma-model is known to satisfy a generalization of the IIB supergravity equations. Their solutions are related by T-duality to solutions of type IIA supergravity with non-isometric linear dilaton. We show how the generalized IIB supergravity equations can be naturally obtained from exceptional field theory. Within this manifestly duality covariant formulation of maximal supergravity, the generalized IIB supergravity equations emerge upon imposing on the fields a simple Scherk-Schwarz ansatz which respects the section constraint.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا