ﻻ يوجد ملخص باللغة العربية
It is known that when there are several D-branes, their space-time coordinates in general become noncommutative. From the point of view of noncommutative geometry, it reflects noncommutativity of the world volume of the D-branes. On the other hand, as we showed in the previous work, in the presence of the constant antisymmetric tensor field the momentum operators of the D-branes have noncommutative structure. In the present paper, we investigate a relation between these noncommutativities and the description of D-branes in terms of the noncommutative Yang-Mills theory recently proposed by Seiberg and Witten. It is shown that the noncommutativity of the Yang-Mills theory, which implies that of the world volume coordinates, originates from both noncommutativities of the transverse coordinates and momenta from the viewpoint of the lower-dimensional D-branes. Moreover, we show that this noncommutativity is transformed by coordinate transformations on the world volume and thereby can be chosen in an arbitrary fixed value. We also make a brief comment on a relation between this fact and a hidden symmetry of the IIB matrix models.
We point out that in some situations it is possible to use matrix model techniques a la Dijkgraaf-Vafa to perturbatively compute D-brane instanton effects. This provides an explanation in terms of stringy instantons of the results in hep-th/0311181.
We analyze proton decay via dimension six operators in certain GUT-like models derived from Type IIA orientifolds with $D6$-branes. The amplitude is parametrically enhanced by a factor of $alpha_{GUT}^{-1/3}$ relative to the coresponding result in fo
We construct a calculational scheme for handling the matrix ordering problems connected with the appearance of D-brane positions taking values in the same Lie algebra as the nonabelian gauge field living on the D-brane. The formalism is based on the
We study correlation functions of D-branes and a supergravity mode in AdS, which are dual to structure constants of two sub-determinant operators with large charge and a BPS single-trace operator. Our approach is inspired by the large charge expansio
In this highly speculative note we conjecture that it may be possible to understand features of coincident D-branes, such as the appearance of enhanced non-abelian gauge symmetry, in a purely geometric fashion, using a form of geometry known as schem