ﻻ يوجد ملخص باللغة العربية
The next-to-leading order (NLO) corrections to the BFKL equation in the BLM optimal scale setting are briefly discussed. A striking feature of the BLM approach is rather weak Q^2-dependence of the Pomeron intercept, which might indicate an approximate conformal symmetry of the equation. An application of the NLO BFKL resummation for the virtual gamma-gamma total cross section shows a good agreement with recent L3 data at the CERN LEP2.
The next-to-leading order (NLO) corrections to the BFKL equation in the BLM optimal scale setting are briefly discussed. A striking feature of the BLM approach is rather weak Q^2-dependence of the Pomeron intercept, which might indicate an approximat
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the
On the basis of previous work by Fadin, Lipatov, and collaborators, and of our group, we extract the irreducible part of the next-to-leading (NL) BFKL kernel, we compute its (IR finite) eigenvalue function, and we discuss its implications for small-x
In this lecture the next-to-leading order (NLO) corrections to the QCD Pomeron intercept obtained from the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation are discussed. It is shown that the BFKL Pomeron intercept when evaluated in non-Abelian physical
On the basis of a renormalization group analysis of the kernel and of the solutions of the BFKL equation with subleading corrections, we propose and calculate a novel expansion of a properly defined effective eigenvalue function. We argue that in thi