ﻻ يوجد ملخص باللغة العربية
The relative growth of field and metric perturbations during preheating is sensitive to initial conditions set in the preceding inflationary phase. Recent work suggests this may protect super-Hubble metric perturbations from resonant amplification during preheating. We show that this possibility is fragile and sensitive to the specific form of the interactions between the inflaton and other fields. The suppression is naturally absent in two classes of preheating in which either (1) the vacua of the non-inflaton fields during inflation are deformed away from the origin, or (2) the effective masses of non-inflaton fields during inflation are small but during preheating are large. Unlike the simple toy model of a $g^2 phi^2 chi^2$ coupling, most realistic particle physics models contain these other features. Moreover, they generically lead to both adiabatic and isocurvature modes and non-Gaussian scars on super-Hubble scales. Large-scale coherent magnetic fields may also appear naturally.
Can super-Hubble metric perturbations be amplified exponentially during preheating ? Yes. An analytical existence proof is provided by exploiting the conformal properties of massless inflationary models. The traditional conserved quantity zeta is non
Recently it has become clear that the resonant amplification of quantum field fluctuations at preheating must be accompanied by resonant amplification of scalar metric perturbations, since the two are united by Einsteins equations. Furthermore, this
Metric perturbations typically strengthen field resonances during preheating. In contrast we present a model in which the super-Hubble field resonances are completely {em suppressed} when metric perturbations are included. The model is the nonminimal
We study thermal equilibration after preheating in inflationary cosmology, which is an important step towards a comprehensive understanding of cosmic thermal history. By noticing that the problem is parallel to thermalization after a relativistic hea
Fermion creation during preheating in the presence of multiple scalar fields exhibits a range of interesting behaviour relevant to estimating post-inflation gravitino abundances. We present non-perturbative analysis of this phenomenon over a 6-dimens