ترغب بنشر مسار تعليمي؟ اضغط هنا

A gluon condensate term in a heavy quark mass

98   0   0.0 ( 0 )
 نشر من قبل Kiselev Valery V.
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English
 تأليف V.V.Kiselev




اسأل ChatGPT حول البحث

We investigate a connection between a renormalon ambiguity of heavy quark mass and the gluon condensate contribution into the quark dispersion law related with a virtuality defining a displacement of the heavy quark from the perturbative mass-shell, which happens inside a hadron.

قيم البحث

اقرأ أيضاً

We present a calculation of the heavy quark transport coefficients in a quark-gluon plasma under the presence of a strong external magnetic field, within the Lowest Landau Level (LLL) approximation. In particular, we apply the Hard Thermal Loop (HTL) technique for the resummed effective gluon propagator, generalized for a hot and magnetized medium. Using the derived effective HTL gluon propagator and the LLL quark propagator we analytically derive the full results for the longitudinal and transverse momentum diffusion coefficients as well as the energy losses for charm and bottom quarks beyond the static limit. We also show numerical results for these coefficients in two special cases where the heavy quark is moving either parallel or perpendicular to the external magnetic field.
In response to the growing need for theoretical tools that can be used in QCD to describe and understand the dynamics of gluons in hadrons in the Minkowski space-time, the renormalization group procedure for effective particles (RGPEP) is shown in th e simplest available context of heavy quarkonia to exhibit a welcome degree of universality in the first approximation it yields once one assumes that beyond perturbation theory gluons obtain effective mass. Namely, in the second-order terms, the Coulomb potential with Breit-Fermi spin couplings in the effective quark-antiquark component of a heavy quarkonium, is corrected in one-flavor QCD by a spin-independent harmonic oscillator term that does not depend on the assumed effective gluon mass or the choice of the RGPEP generator. The new generator we use here is much simpler than the ones used before and has the advantage of being suitable for studies of the effective gluon dynamics at higher orders than the second and beyond the perturbative expansion.
We study the energy loss of an energetic heavy quark produced in a high temperature quark-gluon plasma and travelling a finite distance before emerging in the vacuum. While the retardation time of purely collisional energy loss is found to be of the order of the Debye screening length, we find that the contributions from transition radiation and the Ter-Mikayelian effect do not compensate, leading to a reduction of the zeroth order (in an opacity expansion) energy loss.
The gluon condensate is very sensitive to the QCD deconfinement transition since its value changes drastically with the deconfinement transition. We calculate the gluon condensate dependence of the heavy quark potential in AdS/CFT to study how the pr operty of the heavy quarkonium is affected by a relic of the deconfinement transition. We observe that the heavy quark potential becomes deeper as the value of the gluon condensate decreases. We interpret this as a dropping of the heavy quarkonium mass just above the deconfinement transition, which is similar to the results obtained from QCD sum rule and from a bottom-up AdS/QCD model.
We evaluate heavy-quark (HQ) transport properties in a Quark-Gluon Plasma (QGP) employing interaction potentials extracted from thermal lattice QCD. Within a Brueckner many-body scheme we calculate in-medium T-matrices for charm- and bottom-quark sca ttering off light quarks in the QGP. The interactions are dominated by attractive meson and diquark channels which support bound and resonance states up to temperatures of ~1.5 T_c. We apply pertinent drag and diffusion coefficients (supplemented by perturbative scattering off gluons) in Langevin simulations in an expanding fireball to compute HQ spectra and elliptic flow in sqrt{s_{NN}}=200 GeV Au-Au collisions. We find good agreement with semileptonic electron-decay spectra which supports our nonperturbative computation of the HQ diffusion coefficient, suggestive for a strongly coupled QGP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا