ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure of physical space and new interaction in nature (theory and experiments)

395   0   0.0 ( 0 )
 نشر من قبل Baurov Alexey Yu
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the talk, on the basis of the authors model of formation of the observable physical space $R_3$ in the process of dynamics of special discrete one-dimensional vectorial objects, byuons, while minimizing their potential energy of interaction in the one-dimensional space $R_1$ formed by them, the existence of global anisotropy of observable space and new interaction in nature, is shown. The data of recent experiments are given and discussed.



قيم البحث

اقرأ أيضاً

In the article, on the basis of the authors model of formation of the observable physical space $R_3$ in the process of dynamics of special discrete one-dimensional vectorial objects, byuons, while minimizing their potential energy of interaction in the one-dimensional space $R_1$ formed by them, and based on the Weyls geometrical model of the electromagnetic field, the nature of this field consisting in a suitable variation of byuon interaction periods in the space $R_1$, is shown.
230 - Yu A. Baurov 2008
Results of experimental investigations of a new assumed interaction in nature with the aid of high-current magnets, torsion and piezoresonance balances, high-precision gravimeter, fluctuations in intensity of betta-decay of radioactive elements, plas ma devices and manifestations in astrophysics are presented. A possible explanation of the results obtained based on a hypothesis of global anisotropy of physical space caused by the existence of a cosmological vectorial potential A_g, is given. It is shown that the vector A_g has the following coordinates in the second equatorial coordinate system: right ascension alpha = 293 +- 10, declination delta = 36 +- 10.
231 - N. A. Franchetti 2012
Supernova remnant (SNR) candidates in the giant spiral galaxy M101 have been previously identified from ground-based H-alpha and [SII] images. We have used archival Hubble Space Telescope (HST) H-alpha and broad-band images as well as stellar photome try of 55 SNR candidates to examine their physical structure, interstellar environment, and underlying stellar population. We have also obtained high-dispersion echelle spectra to search for shocked high-velocity gas in 18 SNR candidates, and identified X-ray counterparts to SNR candidates using data from archival observations made by the Chandra X-ray Observatory. Twenty-one of these 55 SNR candidates studied have X-ray counterparts, although one of them is a known ultra-luminous X-ray source. The multi-wavelength information has been used to assess the nature of each SNR candidate. We find that within this limited sample, ~16% are likely remnants of Type Ia SNe and ~45% are remnants of core-collapse SNe. In addition, about ~36% are large candidates which we suggest are either superbubbles or OB/HII complexes. Existing radio observations are not sensitive enough to detect the non-thermal emission from these SNR candidates. Several radio sources are coincident with X-ray sources, but they are associated with either giant HII regions in M101 or background galaxies. The archival HST H-alpha images do not cover the entire galaxy and thus prevents a complete study of M101. Furthermore, the lack of HST [SII] images precludes searches for small SNR candidates which could not be identified by ground-based observations. Such high-resolution images are needed in order to obtain a complete census of SNRs in M101 for a comprehensive investigation of the distribution, population, and rates of SNe in this galaxy.
We introduce the class of Genuinely Local Operation and Shared Randomness (LOSR) Multipartite Nonlocal correlations, that is, correlations between N parties that cannot be obtained from unlimited shared randomness supplemented by any composition of ( N-1)-shared causal Generalized-Probabilistic-Theory (GPT) resources. We then show that noisy N-partite GHZ quantum states as well as the 3-partite W quantum state can produce such correlations. This proves, if the operational predictions of quantum theory are correct, that Natures nonlocality must be boundlessly multipartite in any causal GPT. We develop a computational method which certifies that a noisy N=3 GHZ quantum state with fidelity 85 percent satisfies this property, making an experimental demonstration of our results within reach. We motivate our definition and contrast it with preexisting notions of genuine multipartite nonlocality. This work extends a more compact parallel letter on the same subject and provides all the required technical proofs.
Introducing correlations between the spatial and temporal degrees of freedom of a pulsed optical beam (or wave packet) can profoundly alter its propagation in free space. Indeed, appropriate spatio-temporal spectral correlations can render the wave p acket propagation-invariant: the spatial and temporal profiles remain unchanged along the propagation axis. The spatio-temporal spectral locus of any such wave packet lies at the intersection of the light-cone with tilted spectral hyperplanes. We investigate (2+1)D space-time propagation-invariant light sheets, and identify 10 classes categorized according to the magnitude and sign of their group velocity and the nature of their spatial spectrum - whether the low spatial frequencies are physically allowed or forbidden according to their compatibility with causal excitation and propagation. We experimentally synthesize and characterize all 10 classes using an experimental strategy capable of synthesizing space-time wave packets that incorporate arbitrary spatio-temporal spectral correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا