ﻻ يوجد ملخص باللغة العربية
We derive an effective classical theory for real-time SU($N$) gauge theories at high temperature. By separating off and integrating out quantum fluctuations we obtain a 3D classical path integral over the initial fields and conjugate momenta. The leading hard mode contribution is incorporated in the equations of motion for the classical fields. This yields the gauge invariant hard thermal loop (HTL) effective equation of motion. No gauge-variant terms are generated as in treatments with an intermediate momentum cut-off. Quantum corrections to classical correlation functions can be calculated perturbatively. The 4D renormalizability of the theory ensures that the 4D counterterms are sufficient to render the theory finite. The HTL contributions of the quantum fluctuations provide the counterterms for the linear divergences in the classical theory.
Real-time classical SU($N$) gauge theories at non-zero temperature contain linear divergences. We introduce counterterms for these divergences in the equations of motion in the continuum and on the lattice. These counterterms can be given in terms of
We describe a class of diffeomorphism invariant SU(N) gauge theories in N^2 dimensions, together with some matter couplings. These theories have (N^2-3)(N^2-1) local degrees of freedom, and have the unusual feature that the constraint associated with
We discuss the existence of a conformal phase in SU(N) gauge theories in four dimensions. In this lattice study we explore the model in the bare parameter space, varying the lattice coupling and bare mass. Simulations are carried out with three color
We investigate the physical spectrum of vector-like SU(N) gauge theories with infrared coupling close to but above the critical value for a conformal phase transition. We use dispersion relations, the momentum dependence of the dynamical fermion mass
Considering marginally relevant and relevant deformations of the weakly coupled $(3+1)$-dimensional large $N$ conformal gauge theories introduced in arXiv:2011.13981, we study the patterns of phase transitions in these systems that lead to a symmetry