ﻻ يوجد ملخص باللغة العربية
The concept of effective field theory leads in a natural way to a construction principle for phenomenological sensible models known under the name of the Cheshire Cat Principle. We review its formulation in the chiral bag scenario and discuss its realization for the flavor singlet axial charge. Quantum effects inside the chiral bag induce a color anomaly which requires a compensating surface term to prevent breakdown of color gauge invariance. The presence of this surface term allows one to derive in a gauge-invariant way a chiral-bag version of the Shore-Veneziano two-component formula for the flavor-singlet axial charge of the proton. We show that one can obtain a striking Cheshire-Cat phenomenon with a negligibly small singlet axial charge.
It is shown that discrete-event simulation accurately reproduces the experimental data of a single-neutron interferometry experiment [T. Denkmayr {sl et al.}, Nat. Commun. 5, 4492 (2014)] and provides a logically consistent, paradox-free, cause-and-e
A kind of paradoxical effects has been demonstrated that the pigeonhole principle, i.e., if three pigeons are put in two pigeonholes then at least two pigeons must stay in the same hole, fails in certain quantum mechanical scenario. Here we shall sho
We show that the recent proposal to describe the $N_f=1$ baryon in the large number of color limit as a quantum Hall droplet, can be understood as a chiral bag in a 1+2 dimensional strip using the Cheshire cat principle. For a small bag radius, the b
The Cheshire Cat is a relatively poor group of galaxies dominated by two luminous elliptical galaxies surrounded by at least four arcs from gravitationally lensed background galaxies that give the system a humorous appearance. Our combined optical/X-
A common-sense perception of a physical system is that it is inseparable from its physical properties. The notion of Quantum Cheshire Cat challenges this, as far as quantum systems are concerned. It shows that a quantum system can be decoupled from i