ﻻ يوجد ملخص باللغة العربية
Inflationary reheating is almost completely controlled by the Floquet indices, $mu_k$. Using spectral theory we demonstrate that the stability bands (where $mu_k = 0$) of the Mathieu and Lame equations are destroyed even in Minkowski spacetime, leaving a fractal Cantor set or a measure zero set of stable modes in the cases where the inflaton evolves in an almost-periodic or stochastic manner respectively. These two types of potential model the expected multi-field and quantum backreaction effects during reheating.
Grand unified theories may display multiply interacting fields with strong coupling dynamics. This poses two new problems: (1) What is the nature of chaotic reheating after inflation, and (2) How is reheating sensitive to the mass spectrum of these t
We analyze in detail the perturbative decay of the inflaton oscillating about a generic form of its potential $V(phi) = phi^k$, taking into account the effects of non-instantaneous reheating. We show that evolution of the temperature as a function of
The simplest possibility to explain the baryon asymmetry of the Universe is to assume that radiation is created asymmetrically between baryons and anti-baryons after the inflation. We propose a new mechanism of this kind where CP-violating flavor osc
The low reheat temperature at the end of inflation from the gravitino bound constrains the creation of heavy Majorana neutrinos associated with models of leptogenesis. However, a detailed view of the reheating of the Universe at the end of inflation
We perform a systematic analysis of dark matter production during post-inflationary reheating. Following the period of exponential expansion, the inflaton begins a period of damped oscillations as it decays. These oscillations and the evolution of te