ﻻ يوجد ملخص باللغة العربية
We show that the study of CP asymmetries in neutral B-meson decays provides a very sensitive probe of flavour-changing neutral currents (FCNC). We introduce two new angles, $alpha_{SM}$ and $beta_{SM}$, whose main feature is that they can be readily obtained from the measurement of the CP asymmetries $a_{J/psi K_s}$, $a_{pi^+ pi^-}$ and the ratio $R_u equiv|V_{ud}V_{ub}^*|/|V_{cd}V_{cb}^*|$, providing a quantitative test of the presence of new physics in a model-independent way. Assuming that new physics is due to the presence of an isosinglet down-type quark, we indicate how to reconstruct the unitarity quadrangles and point out that the measurements of the above asymmetries, within the expected experimental errors, may detect FCNC effects, even for values of $|sum_{i=1}^3 V_{id} V_{ib}^* / (V_{td} V_{tb}^*)| $ at the level of a few times $10^{-2}$.
Tree-level Flavor-Changing Neutral Currents (FCNC) are characteristic of models with extra vector-like quarks. These new couplings can strongly modify the B^0 CP asymmetries without conflicting with low--energy constraints. In the light of a low CP a
We report measurements of CP violation parameters in $B^0 to K^0 pi^0$ decays based on a data sample of $657 times 10^6 Bbar{B}$ pairs collected with the Belle detector at the KEKB $e^+ e^-$ asymmetric-energy collider. We use $B^0 to K^0_S pi^0$ deca
Recently the branching ratios for $B^+to K^+bar K^0$ and $B^0 to K^0 bar K^0$ have been measured. Data indicate that the annihilation amplitudes in these decays are not zero. A non-zero annihilation amplitude plays an important role in CP violation f
An angular analysis of the decay $B^0 to phi K^*(892)^0$ is reported based on a $pp$ collision data sample, corresponding to an integrated luminosity of 1.0 fb$^{-1}$, collected at a centre-of-mass energy of $sqrt{s} = 7$ TeV with the LHCb detector.
We report a measurement of time-dependent $CP$ violation parameters in ${B^0 to K_S^0 eta gamma}$ decays. The study is based on a data sample, containing ${772 times 10^6 Bbar{B}}$ pairs, that was collected at the $Upsilon(4S)$ resonance with the Bel