ترغب بنشر مسار تعليمي؟ اضغط هنا

A Precision Measurement of Nuclear Muon Capture on 3He

270   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The muon capture rate in the reaction mu- 3He -> nu + 3H has been measured at PSI using a modular high pressure ionization chamber. The rate corresponding to statistical hyperfine population of the mu-3He atom is (1496.0 +- 4.0) s^-1. This result confirms the PCAC prediction for the pseudoscalar form factors of the 3He-3H system and the nucleon.



قيم البحث

اقرأ أيضاً

The mu + 2H -> nu + n + n, mu + 3He -> nu + 3H, mu + 3He -> nu + n + d and mu + 3He -> nu + n + n + p capture reactions are studied with various realistic potentials under full inclusion of final state interactions. Our results for the two- and three -body break-up of 3He are calculated with a variety of nucleon-nucleon potentials, among which is the AV18 potential, augmented by the Urbana~IX three-nucleon potential. Most of our results are based on the single nucleon weak current operator. As a first step, we have tested our calculation in the case of the mu + 2H -> nu + n + n and mu + 3He -> nu + 3H reactions, for which theoretical predictions obtained in a comparable framework are available. Additionally, we have been able to obtain for the first time a realistic estimate for the total rates of the muon capture reactions on 3He in the break-up channels: 544 1/s and 154 1/s for the n + d and n + n + p channels, respectively. Our results have also been compared with the most recent experimental data, finding a rough agreement for the total capture rates, but failing to reproduce the differential capture rates.
The TWIST collaboration has performed new measurements of two of the parameters that describe muon decay: $rho$, which governs the shape of the overall momentum spectrum, and $delta$, which governs the momentum dependence of the parity-violating deca y asymmetry. This analysis gives the results $rho=0.75014pm 0.00017(text{stat})pm 0.00044(text{syst})pm 0.00011(eta)$, where the last uncertainty arises from the correlation between $rho$ and the decay parameter $eta$, and $delta = 0.75067pm 0.00030(text{stat})pm 0.00067(text{syst})$. These are consistent with the value of 3/4 given for both parameters in the Standard Model of particle physics, and are a factor of two more precise than the measurements previously published by TWIST. A new global analysis of all available muon decay data incorporating these results is presented. Improved lower and upper limits on the decay parameter $P_mu^pixi$ of $0.99524 < P_mu^pixi leq xi < 1.00091$ at 90% confidence are determined, where $P_mu^pi$ is the polarization of the muon when it is created during pion decay, and $xi$ governs the muon decay asymmetry. These results set new model-independent constraints on the possible weak interactions of right-handed particles. Specific implications for left-right symmetric models are discussed.
We report precision measurements of the nuclear magnetic moment of textsuperscript{43}Catextsuperscript{+}, made by microwave spectroscopy of the 4s $^2$S$_{1/2}$ $left|F=4, M=0rightrangle rightarrow left|F=3, M=1rightrangle$ ground level hyperfine c lock transition at a magnetic field of $approx$ 146 G, using a single laser-cooled ion in a Paul trap. We measure a clock transition frequency of $f = 3199941076.920 pm 0.046$ Hz, from which we determine $mu_I / mu_{rm{N}} = -1.315350(9)(1)$, where the uncertainty (9) arises from uncertainty in the hyperfine $A$ constant, and the (1) arises from the uncertainty in our measurement. This measurement is not corrected for diamagnetic shielding due to the bound electrons. We make a second measurement which is less precise but agrees with the first. We use our $mu_I$ value, in combination with previous NMR results, to extract the change in shielding constant of calcium ions due to solvation in D$_2$O: $Delta sigma = -0.00022(1)$.
The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating pro cesses. Measurements of the muons anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio $mu_mu / mu_p$, lepton mass ratio $m_{mu} / m_e$, and proton charge radius $r_p$. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.
The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. L_S is determined from the difference between the mu- disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1 and derive the protons pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06 +- 0.55.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا