ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative corrections to the differential decay rate of polarized orthopositronium

77   0   0.0 ( 0 )
 نشر من قبل D. N. Matsukevich
 تاريخ النشر 1997
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The order - alpha radiative corrections to the differential decay rate of polarized orthopositronium are obtained. Their influences on the three photons coincidence rate as a function of positronium polarization is considered.



قيم البحث

اقرأ أيضاً

Radiative muon decay in the kinematics similar to the neutrinoless decay $muto egamma$ is considered. Radiative corrections due to 1-loop virtual photons and emission of additional soft or hard photons are taken into account. Analytical expressions and numerical estimations are presented.
We discuss the theoretical framework required for the computation of radiative corrections to semileptonic decay rates in lattice simulations, and in particular to those for $K_{ell3}$ decays. This is an extension of the framework we have developed a nd successfully implemented for leptonic decays. New issues which arise for semileptonic decays, include the presence of unphysical terms which grow exponentially with the time separation between the insertion of the weak Hamiltonian and the sink for the final-state meson-lepton pair. Such terms must be identified and subtracted. We discuss the cancellation of infrared divergences and show that, with the QED$_mathrm{,L}$ treatment of the zero mode in the photon propagator, the $O(1/L)$ finite-volume corrections are universal. These corrections however, depend not only on the semileptonic form factors $f^pm(q^2)$ but also on their derivatives $df^pm/dq^2$. (Here $q$ is the momentum transfer between the initial and final state mesons.) We explain the perturbative calculation which would need to be performed to subtract the $O(1/L)$ finite-volume effects.
135 - D. Bardin 2017
Theoretical predictions for Bhabha scattering observables are presented including complete one-loop electroweak radiative corrections. A longitudinal polarization of the initial beams is taken into account. Numerical results for the asymmetry $A_{LR} $ and the relative correction $delta$ are given for the set of the energy $E_{cm}=250, 500, 1000$~GeV with various polarization degrees.
208 - E. Bagan , Patricia Ball , B. Fiol 1995
We calculate the complete ${cal O}(alpha_s)$ corrections to the quark decay $bto ccs$ taking full account of the quark masses, but neglecting penguin contributions. For a c to the b quark mass ratio $m_c/m_b= 0.3$ and a strange quark mass of $0.2,$Ge V, we find that the next-to-leading order (NLO) corrections increase $Gamma(bto ccs)$ by $(32pm 15)%$ with respect to the leading order expression, where the uncertainty is mostly due to scale- and scheme-dependences. Combining this result with the known NLO and non-perturbative corrections to other B meson decay channels we obtain an updated value for the semileptonic branching ratio of B mesons, $B_{SL}$, of $(12.0pm 1.4)% $ using pole quark masses and $(11.2pm 1.7)% $ using running $overline{mbox{MS}}$ masses.
The paper describes high-precision theoretical predictions obtained for the cross sections of the process $e^+e^- to ZH$ for future electron-positron colliders. The calculations performed using the SANC platform taking into account the full contribut ion of one-loop electroweak radiative corrections, as well as longitudinal polarization of the initial beams. Numerical results are given for the energy range $E_{cm}=250$ GeV - $1000$ GeV with various polarization degrees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا