ﻻ يوجد ملخص باللغة العربية
A Finite Energy QCD sum rule at non-zero temperature is used to determine the $q^2$- and the T-dependence of the $rho pi pi$ vertex function in the space-like region. A comparison with an independent QCD determination of the electromagnetic pion form factor $F_{pi}$ at $T eq 0$ indicates that Vector Meson Dominance holds to a very good approximation at finite temperature. At the same time, analytical evidence for deconfinement is obtained from the result that $g_{rho pi pi}(q^{2},T)$ vanishes at the critical temperature $T_c$, independently of $q^{2}$. Also, by extrapolating the $rho pi pi$ form factor to $q^2 = 0$, it is found that the pion radius increases with increasing $T$, and it diverges at $T=T_c$.
Thermal Hilbert moment QCD sum rules are used to obtain the temperature dependence of the hadronic parameters of charmonium in the vector channel, i.e. the $J$ / $psi$ resonance mass, coupling (leptonic decay constant), total width, and continuum thr
The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for de-confinement, as later confirm
We study $bar qq$-hybrid mixing for the light vector mesons and $bar qq$-glueball mixing for the light scalar mesons in Monte-Carlo based QCD Laplace sum rules. By calculating the two-point correlation function of a vector $bar qgamma_mu q$ (scalar
We consider the fidelity of the vector meson dominance (VMD) assumption as an instrument for relating the electromagnetic vector-meson production reaction $e + p to e^prime + V + p$ to the purely hadronic process $V + p to V+p$. Analyses of the photo
Using the most general form of the interpolating current of the baryons, the strong coupling constants of the light vector mesons with the octet baryons are calculated within the light cone QCD sum rules. The SU(3)_f symmetry breaking effects are tak