We propose a two component model for charmed baryon production in $pp$ collisions consisting of the conventional parton fusion mechanism and fragmentation plus quarks recombination in which a $ud$ valence diquark from the proton recombines with a $c$-sea quark to produce a $Lambda_c^+$. Our two-component model is compared with the intrinsic charm two-component model and experimental data.
The polarization properties of the charmed Lambda^+_c baryon are investigated in weak non-leptonic four-body Lambda^+_c -> p + K^- + pi^+ + pi^0 decay. The probability of this decay and the angular distribution of the probability are calculated in th
e effective quark model with chiral U(3)XU(3) symmetry incorporating Heavy Quark Effective theory (HQET) and the extended Nambu-Jona-Lasinio model with a linear realization of chiral U(3)XU(3) symmetry. The theoretical value of the probability of the decay Lambda^+_c -> p + K^- + pi^+ + pi^0 relative to the probability of the decay Lambda^+_c -> p + K^- + pi^+ does not contain free parameters and fits well experimental data. The application of the obtained results to the analysis of the polarization of the Lambda^+_c produced in the processes of photo and hadroproduction is discussed.
We study charm production in charged-current deep-inelastic scattering (DIS) using the xFitter framework. Recent results from the LHC have focused renewed attention on the determination of the strange-quark parton distribution function (PDF) and the
DIS charm process provides important complementary constraints on this quantity. We examine the current PDF uncertainty, and use LHeC pseudodata to estimate the potential improvement from this proposed facility. As xFitter implements both fixed-flavor- and variable-flavor-number schemes, we can compare the impact of these different theoretical choices; this highlights some interesting aspects of multi-scale calculations. We find that the high-statistics LHeC data covering a wide kinematic range could substantially reduce the strange PDF uncertainty.
The associated photoproduction of $KLambda$ from the proton in the low energy region is studied using an isobar model in which the non-resonant contributions are obtained from the non-linear sigma model with chiral SU(3) symmetry which predicts, in a
natural way, the contact term with its coupling strength along with the coupling strengths of the various Born terms predicted by the non-linear sigma model. The present model is an extension of the non-linear sigma model with chiral SU(2) symmetry, used earlier to study the photo, electro, and neutrino productions of pions. In the resonance sector, the contributions from the well established nucleon resonances ($R$) in the $s$ channel, the hyperon resonances ($Y^{*}$) in the $u$ channel, and the kaon resonances ($K^{*}$ and $K_{1}$) in the $t$ channel having spin $le frac{3}{2}$ and mass $<2$ GeV with a significant branching ratio in $KLambda$ decay mode, have been considered. The strong and electromagnetic couplings of the $s$ channel nucleon resonances are taken from experiments while the couplings for the resonances in the $t$ and $u$ channels are fitted to reproduce the current data on the associated photoproduction of $KLambda$ in this energy region. The numerical results are presented for the total and differential cross sections and are compared with the available experimental data from CLAS and SAPHIR as well as with some of the recent theoretical models.
In this work, we investigate the open-charm decay process $psitoLambda_cbar{Lambda}_c$ via the hadronic loop mechanism for vector charmonia above $Lambda_cbar{Lambda}_c$ threshold. The branching ratios of these vector charmonium states to $Lambda_cba
r{Lambda}_c$ are estimated. The charmonium explanation of the $Y(4630)$ observed in $e^+e^- to Lambda_cbar{Lambda}_c$ is tested. Furthermore, for the predicted higher vector charmonia above 4.7 GeV, the branching ratios $mathcal{B}[psi(nS)toLambda_cbar{Lambda}_c]$ with $n=7,8,9$ are found to be of the order of magnitude of $10^{-4}-10^{-3}$ while $mathcal{B}[psi(mD)toLambda_cbar{Lambda}_c]$ with $m=6,7,8$ are of the order of magnitude of $10^{-3}-10^{-2}$. The experimental signals of these missing charmonium states are discussed. The search for them may be an interesting topic in the future BESIII and Belle II experiments.
We study the dependence on the quark mass of the compositeness of the lowest-lying odd parity hyperon states. Thus, we pay attention to $Lambda-$like states in the strange, charm and beauty, sectors which are dynamically generated using a unitarized
meson-baryon model. In the strange sector we use an SU(6) extension of the Weinberg-Tomozawa meson-baryon interaction, and we further implement the heavy-quark spin symmetry to construct the meson-baryon interaction when charmed or beauty hadrons are involved. In the three examined flavor sectors, we obtain two $J^P=1/2^-$ and one $J^P=3/2^-$ $Lambda$ states. We find that the $Lambda$ states which are bound states (the three $Lambda_b$) or narrow resonances (one $Lambda(1405)$ and one $Lambda_c(2595)$) are well described as molecular states composed of $s$-wave meson-baryon pairs. The $frac{1}{2}^-$ wide $Lambda(1405)$ and $Lambda_c(2595)$ as well as the $frac{3}{2}^-$ $Lambda(1520)$ and $Lambda_c(2625)$ states display smaller compositeness and so they would require new mechanisms, such as $d$-wave interactions.