ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino Mass in Physics and Astrophysics

62   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The symmetry between quarks and leptons suggests that neutrinos should have mass. As embodied in the grand unified theory SO(10) this yields masses that can only be detected by neutrino oscillations. Such oscillations could be very important for supernova physics. Present observations of solar neutrinos when combined with standard solar model calculations imply particular parameters for neutrino masses and mixings. If the solar model is somewhat relaxed quite different possibilities emerge, which yield very different predictions for future experiments.

قيم البحث

اقرأ أيضاً

This article presents an overview of neutrino physics research, with highlights on the physics goals, results and interpretations of the current neutrino experiments and future directions and program. It is not meant to be a comprehensive account or detailed review article. Interested readers can pursue the details via the listed references.
This is a short review about relations between new scalars and mechanisms to generate neutrino masses. We investigate leptohilic scalars whose Yukawa interactions are only with leptons. We discuss possibilities that measurements of their leptonic dec ays provide information on how neutrino masses are generated and on parameters in the neutrino mass matrix (e.g. the lightest neutrino mass).
48 - V. Charmandaris 2006
In the present document I review the current organizational structure of Astronomy, Astrophysics and Space Physics in Greece. I briefly present the institutions where professional astronomers are pursuing research, along with some notes of their hist ory, as well as the major astronomical facilities currently available within Greece. I touch upon topics related to graduate studies in Greece and present some statistics on the distribution of Greek astronomers. Even though every attempt is made to substantiate all issues mentioned, some of the views presented have inevitably a personal touch and thus should be treated as such.
We show how neutrino data can be used in order to constrain the free parameters of possible extensions to the standard model of elementary particles (SM). For definiteness, we focus in the recently proposed unparticle scenario. We show that neutrino data, in particular the MUNU experiment, can set stronger bounds than previous reported limits in the scale dimension parameter for certain region (d > 1.5). We compute the sensitivity of future neutrino experiments to unparticle physics such as future neutrino-electron scattering detectors, coherent neutrino-nuclei scattering as well as the ILC . In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks.Finally our results are compared with the current astrophysical limits.
We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا