ﻻ يوجد ملخص باللغة العربية
We investigate small$-x$ resummation effects in QCD coefficient functions for $Z_0g$ and $Wg$ fusion processes, and we compare them with the known ones of $gamma g$ type. We find a strong process dependence, that we argue to be due to the possible presence of collinear singularities for either small or large $k$ of the exchanged gluon. For top quark production, we find that the $ggra tbar{t}$ and $Z_0gra tbar{t}$ channels have larger resummation enhancements than the $Wgra tbar{t}$ one.
We present updated results for the production cross sections of slepton pairs and neutralino-chargino pairs at the LHC with next-to-next-to logarithmic precision matched at approximate QCD next-to-next-to leading order. The explored range of masses o
We investigate enhanced EW corrections to inclusive hard processes in the TeV energy region with emphasis on the small-x situation, in which the hard scale Q is significantly smaller than the available energy sqrt{s}= Q/x. We first propose and justif
It is well understood that the leading logarithmic approximation for the amplitudes of high energy processes is insufficient and that the next-to-leading logarithmic effects are very large and lead to instability of the solution. The resummation at l
In Kaluza-Klein theories of low-scale quantum gravity, gravitons and isosinglet neutrinos may propagate in a higher-dimensional space with large compact dimensions, whereas all particles of the Standard Model are confined on a (1+3)-dimensional subsp
We have derived the coefficients of the highest three 1/x-enhanced small-x logarithms of all timelike splitting functions and the coefficient functions for the transverse fragmentation function in one-particle inclusive e^+e^- annihilation at (in pri